The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 177-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficient method for the analytical-numerical solution to the non-axyally symmetric boundary value problem of elasticity theory for a multiconnected body in the form of a cylinder with $N$ cylindrical cavities is proposed. The solution is constructed as superposition of the exact basis solutions of the Lame equation for a cylinder in the coordinate systems assigned to the centers of the boundary surfaces of the body. The boundary conditions are exactly satisfied with the help of the apparatus of the generalized Fourier method. As a result, the original problem reduces to an infinite system of linear algebraic equations, which has a Fredholm operator in the Hilbert space $l_2$. The resolving system is numerically solved by the reduction. The rate of convergence of the reduction is investigated. The numerical analysis of stresses in the areas of their greatest concentration is carried out. The reliability of the results obtained is confirmed by comparing them for the two cases: a cylinder with sixteen and a cylinder with four cylindrical cavities.
@article{SJVM_2015_18_2_a5,
     author = {A. G. Nikolaev and E. A. Tanchik},
     title = {The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {177--189},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/}
}
TY  - JOUR
AU  - A. G. Nikolaev
AU  - E. A. Tanchik
TI  - The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 177
EP  - 189
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/
LA  - ru
ID  - SJVM_2015_18_2_a5
ER  - 
%0 Journal Article
%A A. G. Nikolaev
%A E. A. Tanchik
%T The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 177-189
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/
%G ru
%F SJVM_2015_18_2_a5
A. G. Nikolaev; E. A. Tanchik. The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/

[1] Abramyan B. L., “K zadache osesimmetrichnoj deformatsii kruglogo tsilindra”, Dokl. AN Arm. SSR, 19:1 (1954), 3–12 | MR | Zbl

[2] Arutyunyan N. Kh., Movchan A. B., Nazarov S. A., “Povedenie reshenij zadach teorii uprugosti v neogranichennykh oblastyakh s paraboloidal'nymi i tsilindricheskimi vklyucheniyami ili polostyami”, Uspekhi mekhaniki, 10:4 (1987), 3–91 | MR

[3] Valov G. M., “Ob osesimmetrichnoj deformatsii sploshnogo krugovogo tsilindra konechnoj dliny”, Prikladnaya matematika i mekhanika, 26:4 (1962), 650–667 | MR | Zbl

[4] Vanin G. A., Mikromekhanika kompozitsionnykh materialov, Naukova dumka, Kiev, 1985

[5] Gomilko A. M., Grinchenko V. T., Meleshko V. V., “Odnorodnye resheniya v zadache o ravnovesii uprugogo tsilindra konechnoj dliny”, Teor. i prikladnaya mekhanika, 1989, no. 20, 3–9 | MR

[6] Grinchenko V. T., “Osesimmetrichnaya zadacha teorii uprugosti dlya polubeskonechnogo krugovogo tsilindra”, Prikladnaya mekhanika, 1:1 (1965), 109–119

[7] Grinchenko V. T., “Osesimmetrichnaya zadacha teorii uprugosti dlya tolstostennogo tsilindra konechnoj dliny”, Prikladnaya mekhanika, 3:8 (1967), 93–103

[8] Grinchenko V. T., Ravnovesie i ustanovivshiesya kolebaniya uprugikh tel konechnykh razmerov, Naukova dumka, Kiev, 1978 | MR

[9] Kantorovich L. V., Akilov G. P., Funktsional'nyj analiz, Nauka, M., 1977 | MR

[10] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982

[11] Lebedev N. N., Spetsial'nye funktsii i ikh prilozheniya, Fizmatlit, M., 1963 | MR

[12] Lur'e A. I., Prostranstvennye zadachi teorii uprugosti, Gostekhizdat, M., 1955 | MR

[13] Nikolaev A. G., Tanchik E. A., “Napryazhennoe sostoyanie v tsilindricheskom obraztse s dvumya parallel'nymi tsilindricheskimi voloknami”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2013, no. 6(103), 32–38

[14] Nikolaev A. G., Protsenko V. S., Obobshchennyj metod Fur'e v prostranstvennykh zadachakh teorii uprugosti, Khar'kov, 2011 (Natsional'nyj aerokosmicheskij universitet im. N. E. Zhukovskogo ‘`Khar’kovskij aviatsionnyj instit)

[15] Nikolaev A. G., “Obosnovanie metoda Fur'e v osnovnykh kraevykh zadachakh teorii uprugosti dlya nekotorykh prostranstvennykh kanonicheskikh oblastej”, Dokl. NAN Ukrainy, 1998, no. 2, 78–83 | MR | Zbl

[16] Nikolaev A. G., Tanchik E. A., “Raspredelenie napryazhenij v tsilindricheskom obraztse materiala s dvumya parallel'nymi tsilindricheskimi polostyami”, Voprosy proektirovaniya i proizvodstva konstruktsij letatel'nykh apparatov, Sb. nauch. tr. Natsional'nogo aerokosmicheskogo universiteta im. N. E. Zhukovskogo “Khar'kovskij aviatsionnyj institute”, 4(76), Khar'kov, 2013, 26–35

[17] Nikolaev A. G., Teoremy slozheniya reshenij uravneniya Lame, Dep. v GNTB Ukrainy ot 21.06.93, No 117-Uk 93, Khar'kovskij aviatsionnyj institut, Khar'kov, 1993

[18] Prokopov V. K., “Osesimmetrichnaya zadacha teorii uprugosti dlya izotropnogo tsilindra”, Tr. Leningradskogo politekhnicheskogo instituta, 1950, no. 2, 286–304

[19] Tokovyj Ju. V., “Osesymetrychni napruzhennja v skinchennomu pruzhnomu cylindri pid dijeju normal'nogo tysku, rivnomirno rozpodilenogo po chastyni bichnoi' poverhni”, Prykl. problemy meh. i matem., 2010, no. 8, 144–151

[20] Meleshko V. V., Tokovyy Yu. V., “Equilibrium of an elastic finite cylinder under axisymmetric discontinuous normal loadings”, J. Eng. Math., 78 (2013), 143–166 | DOI | MR

[21] Vihak V. M., Yasinskyy A. V., Tokovyy Yu. V., Rychahivskyy A. V., “Exact solution of the axisymmetric thermoelasticity problem for a long cylinder subjected to varying with-respect-to-length loads”, J. Mech. Behav. Mater., 18:141–148 (2007)

[22] Williams D. K., Ranson W. F., “Pipe-anchor discontinuity analysis utilizing power series solutions, Bessel functions, and Fourier series”, Nucl. Eng. Des., 220 (2003), 1–10 | DOI

[23] Zhong Z., Sun Q. P., “Analysis of a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains”, Int. J. of Solids and Structures, 39:23 (2002), 5753–5765 | Zbl