Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_2_a5, author = {A. G. Nikolaev and E. A. Tanchik}, title = {The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {177--189}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/} }
TY - JOUR AU - A. G. Nikolaev AU - E. A. Tanchik TI - The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 177 EP - 189 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/ LA - ru ID - SJVM_2015_18_2_a5 ER -
%0 Journal Article %A A. G. Nikolaev %A E. A. Tanchik %T The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2015 %P 177-189 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/ %G ru %F SJVM_2015_18_2_a5
A. G. Nikolaev; E. A. Tanchik. The first boundary value problem of elasticity theory for a~cylinder with $N$~cylindrical cavities. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/SJVM_2015_18_2_a5/
[1] Abramyan B. L., “K zadache osesimmetrichnoj deformatsii kruglogo tsilindra”, Dokl. AN Arm. SSR, 19:1 (1954), 3–12 | MR | Zbl
[2] Arutyunyan N. Kh., Movchan A. B., Nazarov S. A., “Povedenie reshenij zadach teorii uprugosti v neogranichennykh oblastyakh s paraboloidal'nymi i tsilindricheskimi vklyucheniyami ili polostyami”, Uspekhi mekhaniki, 10:4 (1987), 3–91 | MR
[3] Valov G. M., “Ob osesimmetrichnoj deformatsii sploshnogo krugovogo tsilindra konechnoj dliny”, Prikladnaya matematika i mekhanika, 26:4 (1962), 650–667 | MR | Zbl
[4] Vanin G. A., Mikromekhanika kompozitsionnykh materialov, Naukova dumka, Kiev, 1985
[5] Gomilko A. M., Grinchenko V. T., Meleshko V. V., “Odnorodnye resheniya v zadache o ravnovesii uprugogo tsilindra konechnoj dliny”, Teor. i prikladnaya mekhanika, 1989, no. 20, 3–9 | MR
[6] Grinchenko V. T., “Osesimmetrichnaya zadacha teorii uprugosti dlya polubeskonechnogo krugovogo tsilindra”, Prikladnaya mekhanika, 1:1 (1965), 109–119
[7] Grinchenko V. T., “Osesimmetrichnaya zadacha teorii uprugosti dlya tolstostennogo tsilindra konechnoj dliny”, Prikladnaya mekhanika, 3:8 (1967), 93–103
[8] Grinchenko V. T., Ravnovesie i ustanovivshiesya kolebaniya uprugikh tel konechnykh razmerov, Naukova dumka, Kiev, 1978 | MR
[9] Kantorovich L. V., Akilov G. P., Funktsional'nyj analiz, Nauka, M., 1977 | MR
[10] Kristensen R., Vvedenie v mekhaniku kompozitov, Mir, M., 1982
[11] Lebedev N. N., Spetsial'nye funktsii i ikh prilozheniya, Fizmatlit, M., 1963 | MR
[12] Lur'e A. I., Prostranstvennye zadachi teorii uprugosti, Gostekhizdat, M., 1955 | MR
[13] Nikolaev A. G., Tanchik E. A., “Napryazhennoe sostoyanie v tsilindricheskom obraztse s dvumya parallel'nymi tsilindricheskimi voloknami”, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2013, no. 6(103), 32–38
[14] Nikolaev A. G., Protsenko V. S., Obobshchennyj metod Fur'e v prostranstvennykh zadachakh teorii uprugosti, Khar'kov, 2011 (Natsional'nyj aerokosmicheskij universitet im. N. E. Zhukovskogo ‘`Khar’kovskij aviatsionnyj instit)
[15] Nikolaev A. G., “Obosnovanie metoda Fur'e v osnovnykh kraevykh zadachakh teorii uprugosti dlya nekotorykh prostranstvennykh kanonicheskikh oblastej”, Dokl. NAN Ukrainy, 1998, no. 2, 78–83 | MR | Zbl
[16] Nikolaev A. G., Tanchik E. A., “Raspredelenie napryazhenij v tsilindricheskom obraztse materiala s dvumya parallel'nymi tsilindricheskimi polostyami”, Voprosy proektirovaniya i proizvodstva konstruktsij letatel'nykh apparatov, Sb. nauch. tr. Natsional'nogo aerokosmicheskogo universiteta im. N. E. Zhukovskogo “Khar'kovskij aviatsionnyj institute”, 4(76), Khar'kov, 2013, 26–35
[17] Nikolaev A. G., Teoremy slozheniya reshenij uravneniya Lame, Dep. v GNTB Ukrainy ot 21.06.93, No 117-Uk 93, Khar'kovskij aviatsionnyj institut, Khar'kov, 1993
[18] Prokopov V. K., “Osesimmetrichnaya zadacha teorii uprugosti dlya izotropnogo tsilindra”, Tr. Leningradskogo politekhnicheskogo instituta, 1950, no. 2, 286–304
[19] Tokovyj Ju. V., “Osesymetrychni napruzhennja v skinchennomu pruzhnomu cylindri pid dijeju normal'nogo tysku, rivnomirno rozpodilenogo po chastyni bichnoi' poverhni”, Prykl. problemy meh. i matem., 2010, no. 8, 144–151
[20] Meleshko V. V., Tokovyy Yu. V., “Equilibrium of an elastic finite cylinder under axisymmetric discontinuous normal loadings”, J. Eng. Math., 78 (2013), 143–166 | DOI | MR
[21] Vihak V. M., Yasinskyy A. V., Tokovyy Yu. V., Rychahivskyy A. V., “Exact solution of the axisymmetric thermoelasticity problem for a long cylinder subjected to varying with-respect-to-length loads”, J. Mech. Behav. Mater., 18:141–148 (2007)
[22] Williams D. K., Ranson W. F., “Pipe-anchor discontinuity analysis utilizing power series solutions, Bessel functions, and Fourier series”, Nucl. Eng. Des., 220 (2003), 1–10 | DOI
[23] Zhong Z., Sun Q. P., “Analysis of a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains”, Int. J. of Solids and Structures, 39:23 (2002), 5753–5765 | Zbl