Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2015_18_1_a5, author = {R. K. Mohanty and Jyoti Talwar}, title = {A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {65--78}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/} }
TY - JOUR AU - R. K. Mohanty AU - Jyoti Talwar TI - A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2015 SP - 65 EP - 78 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/ LA - ru ID - SJVM_2015_18_1_a5 ER -
%0 Journal Article %A R. K. Mohanty %A Jyoti Talwar %T A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2015 %P 65-78 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/ %G ru %F SJVM_2015_18_1_a5
R. K. Mohanty; Jyoti Talwar. A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 65-78. http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/
[1] Keller H. B., Numerical Methods for Two-point Boundary-value Problems, Blaisdell Pub. Co., Waltham, Massachusetts, 1968 | MR | Zbl
[2] Jain M. K., Iyengar S. R. K., Subramanyam G. S., “Variable mesh methods for the numerical solution of two-point singular perturbation problems”, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273–286 | DOI | Zbl
[3] Evans D. J., “Group explicit methods for solving large linear systems”, Int. J. Comput. Math., 17 (1985), 81–108 | DOI | Zbl
[4] Chawla M. M., Shivakumar P. N., “An efficient finite difference method for two-point boundary value problems”, Neural Parallel Sci. Comput., 4 (1996), 387–396 | MR
[5] Evans D. J., “Iterative methods for solving non-linear two point boundary value problems”, Int. J. Comput. Math., 72 (1999), 395–401 | DOI | MR | Zbl
[6] Evans D. J., “The solution of periodic parabolic equations by the coupled alternating group explicit (CAGE) iterative method”, Int. J. Comput. Math., 4 (1990), 227–235 | DOI | Zbl
[7] Evans D. J., “Parallel strategies for linear systems of equations”, Int. J. Comput. Math., 81 (2004), 417–446 | DOI | MR | Zbl
[8] Sukon K. S., Evans D. J., “Two parameter AGE (TAGE) method for the solution of a tri-diagonal linear system of equations”, Int. J. Comput. Math., 60 (1996), 265–278 | DOI | Zbl
[9] Mohanty R. K., Evans D. J., “Highly accurate two parameter CAGE parallel algorithms for non-linear singular two point boundary value problems”, Int. J. Comput. Math., 82 (2005), 433–444 | DOI | MR | Zbl
[10] Mohanty R. K., “A family of variable mesh methods for the estimates of (du/dr) and solution of non-linear two point boundary value problems with singularity”, J. Comp. Appl. Math., 182 (2005), 173–187 | DOI | MR | Zbl
[11] Evans D. J., Mohanty R. K., “Alternating group explicit method for the numerical solution of non-linear singular two-point boundary value problems using a fourth order finite difference method”, Int. J. Comput. Math., 79 (2002), 1121–1133 | DOI | MR | Zbl
[12] Mohanty R. K., Khosla Noopur, “Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two-point non-linear boundary value problems”, Appl. Math. Comp., 172 (2006), 148–162 | DOI | MR | Zbl
[13] Mohanty R. K., Khosla Noopur, “A third-order-accurate variable-mesh TAGE iterative method for the numerical solution of two-point non-linear boundary value problems”, Int. J. Comput. Math., 82 (2005), 1261–1273 | DOI | MR | Zbl
[14] Mohanty R. K., Sachdev P. L., Jha N., “TAGE method for nonlinear singular two point boundary value problems using a fourth order difference scheme”, Neural Parallel Sci. Comput., 11 (2003), 281–295 | MR | Zbl
[15] Evans D. J., Jain Pragya, “The coupled reduced alternating group explicit (CRAGE) method”, Parallel Algorithms and Applications, 2 (1993), 193–208 | DOI
[16] Feng Qinghua, “Explicit finite difference method for convection-diffusion equations”, Proc. of the World Congress on Engineering, v. 2, London, UK, 2009, 1094–1097
[17] Zheng Bin, Feng Qinghua, “Parallel finite difference method for diffusion equations”, Proc. of the 15th American Conference on Applied Mathematics, 2009, 60–62
[18] Konovalov A. N., “Application of the splitting method to the numerical solution of dynamic problems in elasticity theory”, Zh. vychisl. mat. i mat. fiz., 4:4 (1964), 760–764 | MR | Zbl
[19] Konovalov A. N., “Numerical methods for the dynamical problems of elasticity”, Siberian Math. J., 38:3 (1997), 471–487 | DOI | MR | Zbl
[20] Konovalov A. N., “To the theory of the alternating triangle iteration method”, Siberian Math. J., 43:3 (2002), 439–457 | DOI | MR | Zbl