A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a new coupled reduced alternating group explicit (CRAGE) and Newton-CRAGE iteration methods to solve non-linear singular two point boundary value problems $u''=f(r,u,u')$, $0$, subject to given natural boundary conditions $u(0)=A_1$, $u(1)=A_2$, where $A_1$ and $A_2$ are finite constants, along with a third order numerical method on a geometric mesh. The proposed method is applicable to singular and non-singular problems. We discuss the convergence of the CRAGE iteration method in detail. The results obtained from the proposed CRAGE iteration method are compared with the results of the corresponding two parameter alternating group explicit (TAGE) iteration methods to demonstrate computationally the efficiency of the proposed method.
@article{SJVM_2015_18_1_a5,
     author = {R. K. Mohanty and Jyoti Talwar},
     title = {A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {65--78},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/}
}
TY  - JOUR
AU  - R. K. Mohanty
AU  - Jyoti Talwar
TI  - A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2015
SP  - 65
EP  - 78
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/
LA  - ru
ID  - SJVM_2015_18_1_a5
ER  - 
%0 Journal Article
%A R. K. Mohanty
%A Jyoti Talwar
%T A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2015
%P 65-78
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/
%G ru
%F SJVM_2015_18_1_a5
R. K. Mohanty; Jyoti Talwar. A new coupled reduced alternating group explicit method for non-linear singular two point boundary value problems on a~variable mesh. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 18 (2015) no. 1, pp. 65-78. http://geodesic.mathdoc.fr/item/SJVM_2015_18_1_a5/

[1] Keller H. B., Numerical Methods for Two-point Boundary-value Problems, Blaisdell Pub. Co., Waltham, Massachusetts, 1968 | MR | Zbl

[2] Jain M. K., Iyengar S. R. K., Subramanyam G. S., “Variable mesh methods for the numerical solution of two-point singular perturbation problems”, Comput. Meth. Appl. Mech. Engrg., 42 (1984), 273–286 | DOI | Zbl

[3] Evans D. J., “Group explicit methods for solving large linear systems”, Int. J. Comput. Math., 17 (1985), 81–108 | DOI | Zbl

[4] Chawla M. M., Shivakumar P. N., “An efficient finite difference method for two-point boundary value problems”, Neural Parallel Sci. Comput., 4 (1996), 387–396 | MR

[5] Evans D. J., “Iterative methods for solving non-linear two point boundary value problems”, Int. J. Comput. Math., 72 (1999), 395–401 | DOI | MR | Zbl

[6] Evans D. J., “The solution of periodic parabolic equations by the coupled alternating group explicit (CAGE) iterative method”, Int. J. Comput. Math., 4 (1990), 227–235 | DOI | Zbl

[7] Evans D. J., “Parallel strategies for linear systems of equations”, Int. J. Comput. Math., 81 (2004), 417–446 | DOI | MR | Zbl

[8] Sukon K. S., Evans D. J., “Two parameter AGE (TAGE) method for the solution of a tri-diagonal linear system of equations”, Int. J. Comput. Math., 60 (1996), 265–278 | DOI | Zbl

[9] Mohanty R. K., Evans D. J., “Highly accurate two parameter CAGE parallel algorithms for non-linear singular two point boundary value problems”, Int. J. Comput. Math., 82 (2005), 433–444 | DOI | MR | Zbl

[10] Mohanty R. K., “A family of variable mesh methods for the estimates of (du/dr) and solution of non-linear two point boundary value problems with singularity”, J. Comp. Appl. Math., 182 (2005), 173–187 | DOI | MR | Zbl

[11] Evans D. J., Mohanty R. K., “Alternating group explicit method for the numerical solution of non-linear singular two-point boundary value problems using a fourth order finite difference method”, Int. J. Comput. Math., 79 (2002), 1121–1133 | DOI | MR | Zbl

[12] Mohanty R. K., Khosla Noopur, “Application of TAGE iterative algorithms to an efficient third order arithmetic average variable mesh discretization for two-point non-linear boundary value problems”, Appl. Math. Comp., 172 (2006), 148–162 | DOI | MR | Zbl

[13] Mohanty R. K., Khosla Noopur, “A third-order-accurate variable-mesh TAGE iterative method for the numerical solution of two-point non-linear boundary value problems”, Int. J. Comput. Math., 82 (2005), 1261–1273 | DOI | MR | Zbl

[14] Mohanty R. K., Sachdev P. L., Jha N., “TAGE method for nonlinear singular two point boundary value problems using a fourth order difference scheme”, Neural Parallel Sci. Comput., 11 (2003), 281–295 | MR | Zbl

[15] Evans D. J., Jain Pragya, “The coupled reduced alternating group explicit (CRAGE) method”, Parallel Algorithms and Applications, 2 (1993), 193–208 | DOI

[16] Feng Qinghua, “Explicit finite difference method for convection-diffusion equations”, Proc. of the World Congress on Engineering, v. 2, London, UK, 2009, 1094–1097

[17] Zheng Bin, Feng Qinghua, “Parallel finite difference method for diffusion equations”, Proc. of the 15th American Conference on Applied Mathematics, 2009, 60–62

[18] Konovalov A. N., “Application of the splitting method to the numerical solution of dynamic problems in elasticity theory”, Zh. vychisl. mat. i mat. fiz., 4:4 (1964), 760–764 | MR | Zbl

[19] Konovalov A. N., “Numerical methods for the dynamical problems of elasticity”, Siberian Math. J., 38:3 (1997), 471–487 | DOI | MR | Zbl

[20] Konovalov A. N., “To the theory of the alternating triangle iteration method”, Siberian Math. J., 43:3 (2002), 439–457 | DOI | MR | Zbl