Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_4_a5, author = {R. I. Okuonghae and M. N. O. Ikhile}, title = {$L(\alpha)$-stable variable order implicit second derivative {Runge} {Kutta} methods}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {373--387}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/} }
TY - JOUR AU - R. I. Okuonghae AU - M. N. O. Ikhile TI - $L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 373 EP - 387 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/ LA - ru ID - SJVM_2014_17_4_a5 ER -
%0 Journal Article %A R. I. Okuonghae %A M. N. O. Ikhile %T $L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 373-387 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/ %G ru %F SJVM_2014_17_4_a5
R. I. Okuonghae; M. N. O. Ikhile. $L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 373-387. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/
[1] Butcher J. C., “A multistep generalization of Runge Kutta methods with four or five stages”, J. ACM, 14:1 (1967), 84–99 | DOI | MR | Zbl
[2] Butcher J. C., The Numerical Analysis of Ordinary Differential Equations: Runge Kutta and General Linear Methods, Wiley, Chichester, 1987 | MR | Zbl
[3] Butcher J. C., Numerical Methods for Ordinary Differential Equations, Second Edition, Wiley, Chichester, 2008 | MR | Zbl
[4] Butcher J. C., “Trees and numerical methods for ordinary differential equations”, Numerical Algorithms, 53 (2010), 153–170 | DOI | MR | Zbl
[5] Dahlquist G., “A special stability problem for linear multistep methods”, BIT, 3 (1963), 27–43 | DOI | MR | Zbl
[6] Enright W. H., “Second derivative multistep methods for stiff ODEs”, SIAM J. Numer. Anal., 11:2 (1974), 321–331 | DOI | MR | Zbl
[7] Fatunla S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1988 | MR | Zbl
[8] Hairer E., Wanner G., Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl
[9] Kastlunger K. H., Wanner G., “Runge Kutta processes with multiple nodes”, Computing (Arch. Elektron. Rechnen), 9 (1972), 9–24 | MR | Zbl
[10] Kastlunger K. H., Wanner G., “On Turan type implicit Runge Kutta methods”, Computing (Arch. Elektron. Rechnen), 9 (1972), 317–325 | MR | Zbl
[11] Chan R. P. K., Tsai A. Y. J., “On explicit two-derivative Runge Kutta methods”, Numerical Algorithms, 53:2–3 (2010), 171–194 | DOI | MR | Zbl
[12] Tsai A. Y. J., Two-derivative Runge Kutta methods for differential equations, Ph. D. Thesis, University of Auckland, New Zealand, Auckland, 2011
[13] Ikhile M. N. O., Okuonghae R. I., “Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPsin ODEs”, J. Nig. Assoc. Math. Physics, 11 (2007), 175–190
[14] Okuonghae R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph. D. Thesis, Dept. of Math., University of Benin, Nigeria, Benin City, 2008
[15] Okuonghae R. I., “A class of continuous hybrid LMM for stiff IVPs in ODEs”, Annals of the Alexandru Ioan Cuza University. Mathematics, 58:2 (2012), 239–258 | DOI | MR | Zbl
[16] Okuonghae R. I., Ikhile M. N. O., “A continuous formulation of $A(\alpha)$-stable second derivative linear multistep methods for stiff IVPs and ODEs”, J. of Algorithms and Comp. Technology, 6:1 (2011), 79–101 | DOI | MR
[17] Okuonghae R. I., Ogunleye S. O., Ikhile M. N. O., “Some explicit general linear methods for IVPs in ODEs”, J. of Algorithms and Comp. Technology, 7:1 (2013), 41–63 | DOI | MR | Zbl
[18] Okuonghae R. I., Ikhile M. N. O., “$A(\alpha)$-stable linear multistep methods for stiff IVPs in ODEs”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 50:1 (2011), 75–92 | MR
[19] Okuonghae R. I., Ikhile M. N. O., “The numerical solution of stiff IVPs in ODEs using modified second derivative BDF”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 51:1 (2012), 51–77 | MR | Zbl
[20] Okuonghae R. I., Ikhile M. N. O., “On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs and ODEs”, Numerical Analysis and Appl., 5:3 (2012), 231–241 | DOI | MR | Zbl
[21] Okuonghae R. I., Ikhile M. N. O., “A class of hybrid linear multistep methods with $A(\alpha)$-stability properties for stiff IVPs in ODEs”, J. of Numerical Mathematics, 21:2 (2013), 157–172 | DOI | MR | Zbl
[22] Stoer J., Bulirsch R., Introduction to Numerical Analysis, 3rd ed., Springer-Verlag, Berlin–New York, 2002 | MR