$L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 373-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the extension of the popular Runge Kutta methods (RKMs) to second derivative Runge Kutta methods (SDRKMs) for the direct solution of stiff initial value problems (IVPs) of ordinary differential equations (ODEs). The methods are based on using collocation and interpolation techniques. The last stage of the input approximation is identical to the output method. The SDRKMs are $L(\alpha)$-stable for the methods examined. Numerical experiments are given comparing one of these methods with a two derivative Runge Kutta method (TDRKM) and a second derivative linear multistep method (SDLMM).
@article{SJVM_2014_17_4_a5,
     author = {R. I. Okuonghae and M. N. O. Ikhile},
     title = {$L(\alpha)$-stable variable order implicit second derivative {Runge} {Kutta} methods},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {373--387},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/}
}
TY  - JOUR
AU  - R. I. Okuonghae
AU  - M. N. O. Ikhile
TI  - $L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 373
EP  - 387
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/
LA  - ru
ID  - SJVM_2014_17_4_a5
ER  - 
%0 Journal Article
%A R. I. Okuonghae
%A M. N. O. Ikhile
%T $L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 373-387
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/
%G ru
%F SJVM_2014_17_4_a5
R. I. Okuonghae; M. N. O. Ikhile. $L(\alpha)$-stable variable order implicit second derivative Runge Kutta methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 373-387. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a5/

[1] Butcher J. C., “A multistep generalization of Runge Kutta methods with four or five stages”, J. ACM, 14:1 (1967), 84–99 | DOI | MR | Zbl

[2] Butcher J. C., The Numerical Analysis of Ordinary Differential Equations: Runge Kutta and General Linear Methods, Wiley, Chichester, 1987 | MR | Zbl

[3] Butcher J. C., Numerical Methods for Ordinary Differential Equations, Second Edition, Wiley, Chichester, 2008 | MR | Zbl

[4] Butcher J. C., “Trees and numerical methods for ordinary differential equations”, Numerical Algorithms, 53 (2010), 153–170 | DOI | MR | Zbl

[5] Dahlquist G., “A special stability problem for linear multistep methods”, BIT, 3 (1963), 27–43 | DOI | MR | Zbl

[6] Enright W. H., “Second derivative multistep methods for stiff ODEs”, SIAM J. Numer. Anal., 11:2 (1974), 321–331 | DOI | MR | Zbl

[7] Fatunla S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1988 | MR | Zbl

[8] Hairer E., Wanner G., Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl

[9] Kastlunger K. H., Wanner G., “Runge Kutta processes with multiple nodes”, Computing (Arch. Elektron. Rechnen), 9 (1972), 9–24 | MR | Zbl

[10] Kastlunger K. H., Wanner G., “On Turan type implicit Runge Kutta methods”, Computing (Arch. Elektron. Rechnen), 9 (1972), 317–325 | MR | Zbl

[11] Chan R. P. K., Tsai A. Y. J., “On explicit two-derivative Runge Kutta methods”, Numerical Algorithms, 53:2–3 (2010), 171–194 | DOI | MR | Zbl

[12] Tsai A. Y. J., Two-derivative Runge Kutta methods for differential equations, Ph. D. Thesis, University of Auckland, New Zealand, Auckland, 2011

[13] Ikhile M. N. O., Okuonghae R. I., “Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPsin ODEs”, J. Nig. Assoc. Math. Physics, 11 (2007), 175–190

[14] Okuonghae R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph. D. Thesis, Dept. of Math., University of Benin, Nigeria, Benin City, 2008

[15] Okuonghae R. I., “A class of continuous hybrid LMM for stiff IVPs in ODEs”, Annals of the Alexandru Ioan Cuza University. Mathematics, 58:2 (2012), 239–258 | DOI | MR | Zbl

[16] Okuonghae R. I., Ikhile M. N. O., “A continuous formulation of $A(\alpha)$-stable second derivative linear multistep methods for stiff IVPs and ODEs”, J. of Algorithms and Comp. Technology, 6:1 (2011), 79–101 | DOI | MR

[17] Okuonghae R. I., Ogunleye S. O., Ikhile M. N. O., “Some explicit general linear methods for IVPs in ODEs”, J. of Algorithms and Comp. Technology, 7:1 (2013), 41–63 | DOI | MR | Zbl

[18] Okuonghae R. I., Ikhile M. N. O., “$A(\alpha)$-stable linear multistep methods for stiff IVPs in ODEs”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 50:1 (2011), 75–92 | MR

[19] Okuonghae R. I., Ikhile M. N. O., “The numerical solution of stiff IVPs in ODEs using modified second derivative BDF”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 51:1 (2012), 51–77 | MR | Zbl

[20] Okuonghae R. I., Ikhile M. N. O., “On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs and ODEs”, Numerical Analysis and Appl., 5:3 (2012), 231–241 | DOI | MR | Zbl

[21] Okuonghae R. I., Ikhile M. N. O., “A class of hybrid linear multistep methods with $A(\alpha)$-stability properties for stiff IVPs in ODEs”, J. of Numerical Mathematics, 21:2 (2013), 157–172 | DOI | MR | Zbl

[22] Stoer J., Bulirsch R., Introduction to Numerical Analysis, 3rd ed., Springer-Verlag, Berlin–New York, 2002 | MR