Numerical stochastic models of the sea surface undulation and extreme ocean waves
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 349-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with simulation of the time-space stochastic structure of the sea surface undulation and extreme ocean waves. Numerical algorithms are constructed on the basis of conditional spectral models and models of time series adapting data of observations. Estimates for frequencies of extreme waves appearance are studied on the basis of the theory of random processes and fields.
@article{SJVM_2014_17_4_a3,
     author = {K. V. Litvenko and S. M. Prigarin},
     title = {Numerical stochastic models of the sea surface undulation and extreme ocean waves},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {349--361},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a3/}
}
TY  - JOUR
AU  - K. V. Litvenko
AU  - S. M. Prigarin
TI  - Numerical stochastic models of the sea surface undulation and extreme ocean waves
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 349
EP  - 361
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a3/
LA  - ru
ID  - SJVM_2014_17_4_a3
ER  - 
%0 Journal Article
%A K. V. Litvenko
%A S. M. Prigarin
%T Numerical stochastic models of the sea surface undulation and extreme ocean waves
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 349-361
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a3/
%G ru
%F SJVM_2014_17_4_a3
K. V. Litvenko; S. M. Prigarin. Numerical stochastic models of the sea surface undulation and extreme ocean waves. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 349-361. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a3/

[1] Pelinovsky E., Kharif Ch., Extreme Ocean Waves, Springer, Berlin, 2008 | MR

[2] Kurkin A. A., Pelinovskii E. N., Volny-ubiitsy: fakty, teoriya i modelirovanie, Nizhegorodskii gosudarstvennyi tekhnicheskii universitet, Nizhnii Novgorod, 2004

[3] Prigarin S. M., “Conditional spectral models of Gaussian homogeneous fields”, Russ. J. of Numerical Analysis and Math. Modelling, 13:1 (1998), 57–68 | DOI | MR

[4] Anvarov S. R., Prigarin S. M., “Chislennoe modelirovanie prostranstvenno-vremennoi struktury poverkhnosti morskogo volneniya dlya resheniya opticheskikh zadach”, Optika atmosfery i okeana, 7:5 (1994), 685–693

[5] Kargin B. A., Oppel U. G., Prigarin S. M., “Simulation of the undulated sea surface and study of its optical properties by Monte Carlo method”, Proc. SPIE, 3583 (1999), 316–324 | DOI

[6] Kargin B. A., Prigarin S. M., “Imitatsiya poverkhnosti morskogo volneniya i issledovanie ee opticheskikh svoistv metodom Monte-Karlo”, Optika atmosfery i okeana, 5:3 (1992), 285–291 | MR

[7] Tovstik P. E., Tovstik T. M., Shekhovtsov V. A., “O vliyanii formy spektralnoi plotnosti sluchainogo volneniya na kolebaniya morskoi statsionarnoi platformy”, Vestnik SPbGU. Ser. 1, 2012, no. 2, 61–68

[8] Davidan I. M., Lopatukhin L. I., Rozhkov V. A., Vetrovoe volnenie v Mirovom okeane, Gidrometeoizdat, L., 1985

[9] Krylov Yu. M., Spektralnye metody issledovaniya i rascheta vetrovykh voln, Gidrometeoizdat, L., 1966

[10] Kraichnan R. H., “Diffusion by a random velocity field”, Phys. Fluids, 13:1 (1970), 22–31 | DOI | Zbl

[11] Matheron G., “The intrinsic random functions and their applications”, Advances in Applied Probability, 5 (1973), 439–468 | DOI | MR | Zbl

[12] Orfeuil J. P., Simulation du Wiener–Levi et de ses Integrales, Internal report, Centre de Morphologie Mathematique, Fontaineblau, 1972

[13] Shinozuka M., “Simulation of multivariate and multidimensional random processes”, J. of Acoust. Soc. Am., 49 (1971), 357–368 | DOI

[14] Mikhailov G. A., “Chislennoe postroenie sluchainogo polya s zadannoi spektralnoi plotnostyu”, DAN SSSR, 238:4 (1978), 793–795 | MR

[15] Mikhailov G. A., “Priblizhennye modeli sluchainykh protsessov i polei”, Zhurn. vychisl. matematiki i mat. fiziki, 23:3 (1983), 558–566 | MR

[16] Kurbanmuradov O., “Weak convergence of approximate models of random fields”, Russ. J. Num. Anal. and Math. Modell., 10:6 (1995), 500–517 | MR

[17] Kramer P., Kurbanmuradov O., Sabelfeld K., “Comparative analysis of multiscale Gaussian random field simulation algorithms”, J. Comp. Phys., 226:1 (2007), 897–924 | DOI | MR | Zbl

[18] Prigarin S. M., Spectral Models of Random Fields in Monte Carlo Methods, VSP, Utrecht, 2001

[19] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[20] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR

[21] Sveshnikov A. A., Prikladnye metody teorii sluchainykh funktsii, Nauka, M., 1968 | MR | Zbl

[22] Tikhonov V. I., Khimenko V. I., Vybrosy traektorii sluchainykh protsessov, Nauka, M., 1987 | MR | Zbl

[23] Lehner S. H., “Extreme wave statistics from radar data sets”, Geoscience and Remote Sensing Symposium 2004, Proc. 2004 IEEE International (IGARSS' 04), v. 3, 2004, 1880–1883

[24] Nikolkina I., Didenkulova I., “Rogue waves in 2006–2010”, Nat. Hazards Earth Syst. Sci., 11:11 (2011), 2913–2924 | DOI | MR

[25] Baschek B., Imai J., “Rogue wave observations off the US West Coast”, Oceanography, 24:2 (2011), 158–165 | DOI