Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 339-348

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a priori global accuracy estimate for approximate solutions to linear inverse problems with perturbed data can be of the same order as approximate data errors for well-posed in the sense of Tikhonov problems only. A method for assessing the quality of selected sets of correctness is proposed. The use of the generalized residual method on a set of correctness allows us to solve the inverse problem and to obtain a posteriori accuracy estimate for approximate solutions, which is comparable with the accuracy of the problem data. The approach proposed is illustrated by a numerical example.
@article{SJVM_2014_17_4_a2,
     author = {A. S. Leonov},
     title = {Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {339--348},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 339
EP  - 348
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/
LA  - ru
ID  - SJVM_2014_17_4_a2
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 339-348
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/
%G ru
%F SJVM_2014_17_4_a2
A. S. Leonov. Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 339-348. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/