Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_4_a2, author = {A. S. Leonov}, title = {Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {339--348}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/} }
TY - JOUR AU - A. S. Leonov TI - Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 339 EP - 348 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/ LA - ru ID - SJVM_2014_17_4_a2 ER -
%0 Journal Article %A A. S. Leonov %T Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 339-348 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/ %G ru %F SJVM_2014_17_4_a2
A. S. Leonov. Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 339-348. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/
[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[2] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR
[3] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR
[4] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SOAN SSSR, Novosibirsk, 1962 | MR
[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, M., Nauka
[6] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR
[7] Tanana V. P., Rekant M. A., Yanchenko S. I., Optimizatsiya metodov resheniya operatornykh uravnenii, Izd-vo Uralskogo universiteta, Sverdlovsk, 1987 | MR | Zbl
[8] Engl H. W., Hanke M., Neubauer A., Regularization of Inverse Problems, Kluwer Academic Publ., Dordrecht, 1996 | MR | Zbl
[9] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002
[10] Bakushinsky A. B., Kokurin M. Yu., Iterative Methods for Approximate Solution of Inverse Problems, Springer, Dordrecht, 2004 | MR | Zbl
[11] Vinokurov V. A., “O pogreshnosti priblizhennogo resheniya lineinykh obratnykh zadach”, DAN SSSR, 246:4 (1979), 792–793 | MR | Zbl
[12] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR
[13] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR | Zbl
[14] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[15] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198 | MR
[16] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR | Zbl
[17] Yagola A. G., Dorofeev K. Yu., “Metod rasshiryayuschikhsya kompaktov resheniya nekorrektnykh zadach pri uslovii istokopredstavimosti”, Vestnik Moskovskogo universiteta. Ser. 3. Fizika. Astronomiya, 1999, no. 2, 64–66 | MR
[18] Titarenko V. N., Yagola A. G., Dorofeev K. Yu., Nikolaeva N. N., “New approach to error estimation to ill-posed problems with applications to inverse problems of heat conductivity”, J. of Inverse and Ill-Posed Problems, 10:2 (2002), 155–170 | MR
[19] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, URSS, M., 2010
[20] Leonov A. S., “Chislennaya realizatsiya spetsialnykh regulyarizuyuschikh algoritmov dlya resheniya odnogo klassa nekorrektnykh zadach s istokoobrazno predstavimymi resheniyami”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 4:3 (2001), 269–280 | Zbl