Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 339-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a priori global accuracy estimate for approximate solutions to linear inverse problems with perturbed data can be of the same order as approximate data errors for well-posed in the sense of Tikhonov problems only. A method for assessing the quality of selected sets of correctness is proposed. The use of the generalized residual method on a set of correctness allows us to solve the inverse problem and to obtain a posteriori accuracy estimate for approximate solutions, which is comparable with the accuracy of the problem data. The approach proposed is illustrated by a numerical example.
@article{SJVM_2014_17_4_a2,
     author = {A. S. Leonov},
     title = {Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {339--348},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 339
EP  - 348
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/
LA  - ru
ID  - SJVM_2014_17_4_a2
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 339-348
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/
%G ru
%F SJVM_2014_17_4_a2
A. S. Leonov. Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 339-348. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[3] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[4] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SOAN SSSR, Novosibirsk, 1962 | MR

[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, M., Nauka

[6] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[7] Tanana V. P., Rekant M. A., Yanchenko S. I., Optimizatsiya metodov resheniya operatornykh uravnenii, Izd-vo Uralskogo universiteta, Sverdlovsk, 1987 | MR | Zbl

[8] Engl H. W., Hanke M., Neubauer A., Regularization of Inverse Problems, Kluwer Academic Publ., Dordrecht, 1996 | MR | Zbl

[9] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[10] Bakushinsky A. B., Kokurin M. Yu., Iterative Methods for Approximate Solution of Inverse Problems, Springer, Dordrecht, 2004 | MR | Zbl

[11] Vinokurov V. A., “O pogreshnosti priblizhennogo resheniya lineinykh obratnykh zadach”, DAN SSSR, 246:4 (1979), 792–793 | MR | Zbl

[12] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[13] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR | Zbl

[14] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[15] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198 | MR

[16] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR | Zbl

[17] Yagola A. G., Dorofeev K. Yu., “Metod rasshiryayuschikhsya kompaktov resheniya nekorrektnykh zadach pri uslovii istokopredstavimosti”, Vestnik Moskovskogo universiteta. Ser. 3. Fizika. Astronomiya, 1999, no. 2, 64–66 | MR

[18] Titarenko V. N., Yagola A. G., Dorofeev K. Yu., Nikolaeva N. N., “New approach to error estimation to ill-posed problems with applications to inverse problems of heat conductivity”, J. of Inverse and Ill-Posed Problems, 10:2 (2002), 155–170 | MR

[19] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, URSS, M., 2010

[20] Leonov A. S., “Chislennaya realizatsiya spetsialnykh regulyarizuyuschikh algoritmov dlya resheniya odnogo klassa nekorrektnykh zadach s istokoobrazno predstavimymi resheniyami”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 4:3 (2001), 269–280 | Zbl