Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_4_a2, author = {A. S. Leonov}, title = {Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {339--348}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/} }
TY - JOUR AU - A. S. Leonov TI - Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 339 EP - 348 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/ LA - ru ID - SJVM_2014_17_4_a2 ER -
%0 Journal Article %A A. S. Leonov %T Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 339-348 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/ %G ru %F SJVM_2014_17_4_a2
A. S. Leonov. Which of inverse problems can have a~priori approximate solution accuracy estimates comparable in order with the data accuracy. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 4, pp. 339-348. http://geodesic.mathdoc.fr/item/SJVM_2014_17_4_a2/