Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 273-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of an $H^1$1-Galerkin mixed finite element method for parabolic problems in one space dimension. Both semi-discrete and fully discrete schemes are analyzed assuming reduced regularity of the initial data. More precisely, for a spatially discrete scheme error estimates of order $\mathcal O(h^2t^{-1/2})$ for positive time are established assuming the initial function $p_0\in H^2(\Omega)\cap H_0^1(\Omega)$. Further, we use an energy technique together with a parabolic duality argument to derive error estimates of order $\mathcal O(h^2t^{-1})$ when $p_0$ is only in $H_0^1(\Omega)$. A discrete-in-time backward Euler method is analyzed and almost optimal order error bounds are established.
@article{SJVM_2014_17_3_a4,
     author = {M. Tripathy and Rajen Kumar Sinha},
     title = {Convergence of $H^1${-Galerkin} mixed finite element method for parabolic problems with reduced regularity of initial data},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {273--288},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/}
}
TY  - JOUR
AU  - M. Tripathy
AU  - Rajen Kumar Sinha
TI  - Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 273
EP  - 288
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/
LA  - ru
ID  - SJVM_2014_17_3_a4
ER  - 
%0 Journal Article
%A M. Tripathy
%A Rajen Kumar Sinha
%T Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 273-288
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/
%G ru
%F SJVM_2014_17_3_a4
M. Tripathy; Rajen Kumar Sinha. Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 273-288. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/

[1] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[2] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[3] Brezzi F., Douglas J., Marini J. L. D., “Two families of mixed finite elements for second order elliptic problems”, Numer. Math., 47 (1985), 217–235 | DOI | MR | Zbl

[4] Campbell S. L., Brenan K. E., Petzold L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, American Elsevier Science, New York, 1989 | MR

[5] Chen H., Ewing R., Lazarov R. D., “Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data”, Numer. Math., 78 (1998), 495–521 | DOI | MR | Zbl

[6] Douglas J., Dupont T. F., Wheeler M. F., “$H^1$-Galerkin methods for the Laplace and heat equations”, Mathematical aspects of Finite Elements in Partial Differential Equations, ed. C. de Boor, Academic Press, New York, 1975, 383–415 | MR

[7] Johnson C., Thomee V., “Error estimates for some mixed finite element methods for parabolic type problems”, RAIRO Analyse numrerique, 15 (1981), 41–78 | MR | Zbl

[8] Luskin M., Rannacher R., “On the smoothing property of the Galerkin method for parabolic equations”, SIAM J. Numer. Anal., 19:1 (1982), 93–113 | DOI | MR | Zbl

[9] Neittaanmäki P., Saranen J., “A mixed finite element method for the heat flow problem”, BIT, 21:3 (1981), 342–346 | DOI | MR

[10] Pani A. K., “An $H^1$-Galerkin mixed finite element method for parabolic partial differential equations”, SIAM J. Numer. Anal., 35:2 (1998), 712–727 | DOI | MR | Zbl

[11] Pani A. K., Das P. C., “An $H^1$-Galerkin method for quasilinear parabolic partial differential equations”, Methods of Functional Analysis in Approximation Theory, ISNM, 76, eds. C. A. Micchelli, D. V. Pai, B. V. Limaye, Birkhäuser-Verlag, Basel, 1986, 357–370 | MR

[12] Pani A. K., Fairweather G., “$H^1$-Galerkin mixed finite element methods for parabolic partial integro-differential equations”, IMA J. Numer. Anal., 22 (2002), 231–252 | DOI | MR | Zbl

[13] Pehlivanov A. I., Carey G. F., Lazarov R. D., “Least-squares mixed finite elements for second order elliptic problems”, SIAM J. Numer. Anal., 31:5 (1994), 1368–1377 | DOI | MR | Zbl

[14] Raviart P. A., Thomas J. M., “A mixed finite element method for second order elliptic problems”, Mathematical aspects of finite element methods, Lecture Notes in Mathematics, 606, Springer-Verlag, New York, 1977, 293–315 | MR

[15] Thomee V., Galerkin Finite Element Methods for Parabolic Problems, 2nd Ed., Springer-Verlag, Berlin–New York, 2006 | MR | Zbl