Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 273-288
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the convergence of an $H^1$1-Galerkin mixed finite element method for parabolic problems in one space dimension. Both semi-discrete and fully discrete schemes are analyzed assuming reduced regularity of the initial data. More precisely, for a spatially discrete scheme error estimates of order $\mathcal O(h^2t^{-1/2})$ for positive time are established assuming the initial function $p_0\in H^2(\Omega)\cap H_0^1(\Omega)$. Further, we use an energy technique together with a parabolic duality argument to derive error estimates of order $\mathcal O(h^2t^{-1})$ when $p_0$ is only in $H_0^1(\Omega)$. A discrete-in-time backward Euler method is analyzed and almost optimal order error bounds are established.
@article{SJVM_2014_17_3_a4,
author = {M. Tripathy and Rajen Kumar Sinha},
title = {Convergence of $H^1${-Galerkin} mixed finite element method for parabolic problems with reduced regularity of initial data},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {273--288},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/}
}
TY - JOUR AU - M. Tripathy AU - Rajen Kumar Sinha TI - Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 273 EP - 288 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/ LA - ru ID - SJVM_2014_17_3_a4 ER -
%0 Journal Article %A M. Tripathy %A Rajen Kumar Sinha %T Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 273-288 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/ %G ru %F SJVM_2014_17_3_a4
M. Tripathy; Rajen Kumar Sinha. Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 273-288. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/