Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_3_a4, author = {M. Tripathy and Rajen Kumar Sinha}, title = {Convergence of $H^1${-Galerkin} mixed finite element method for parabolic problems with reduced regularity of initial data}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {273--288}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/} }
TY - JOUR AU - M. Tripathy AU - Rajen Kumar Sinha TI - Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 273 EP - 288 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/ LA - ru ID - SJVM_2014_17_3_a4 ER -
%0 Journal Article %A M. Tripathy %A Rajen Kumar Sinha %T Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 273-288 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/ %G ru %F SJVM_2014_17_3_a4
M. Tripathy; Rajen Kumar Sinha. Convergence of $H^1$-Galerkin mixed finite element method for parabolic problems with reduced regularity of initial data. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 273-288. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a4/