A cellular automata model of three organisms populations in lake Baikal
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 217-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

A cellular automata model of population dynamics of three organisms in Lake Baikal is proposed and investigated. Each species is divided into age groups. There are eight groups all together. The model allows one to take into account a spatial organisms distribution, a seasonal dependency of birth rates, a possible habitat pollution and water streams. A computational experiment was carried out for the case of pollution that is in the south area of lake Baikal. It demonstrates that the population dynamics tends to the oscillating process with a period equal to 1 year. The assessment of the critical pollution intensity which leads to the total extinction is presented. The model was verified within production-to-biomass and frequency of occurrence ratios.
@article{SJVM_2014_17_3_a0,
     author = {I. V. Afanasyev},
     title = {A cellular automata model of three organisms populations in lake {Baikal}},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {217--227},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/}
}
TY  - JOUR
AU  - I. V. Afanasyev
TI  - A cellular automata model of three organisms populations in lake Baikal
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 217
EP  - 227
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/
LA  - ru
ID  - SJVM_2014_17_3_a0
ER  - 
%0 Journal Article
%A I. V. Afanasyev
%T A cellular automata model of three organisms populations in lake Baikal
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 217-227
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/
%G ru
%F SJVM_2014_17_3_a0
I. V. Afanasyev. A cellular automata model of three organisms populations in lake Baikal. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 217-227. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/

[1] Wolfram S., A New Kind of Science, Wolfram Media Inc., USA, 2002 | MR | Zbl

[2] Chua L. O., CNN: A Paradigm for Complexity, Series A: World Scientific Series on Nonlinear Science, 31, World Scientific Publishing Company, Singapore, 1998 | Zbl

[3] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, IKI, Izhevsk, 2008

[4] Madore B., Freedman W., “Computer simulation of the Belousov–Zhabotinski reaction”, Science, 222 (1983), 615–618 | DOI

[5] Bandman O. L., “Cellular Automata Composition Techniques for Spatial Dynamics Simulating”, Simulating Complex Systems by Cellular Automata, eds. A. G. Hoekstra et al., Springer, Berlin, 2010, 81–115 | Zbl

[6] Afanasev I. V., “Issledovanie evolyutsii kletochnykh avtomatov, modeliruyuschikh protsess “razdeleniya faz” na treugolnoi setke”, Prikladnaya diskretnaya matematika, 2010, no. 4, 79–90

[7] Bandman O. L., “A method for construction of cellular automata simulating pattern formation processes”, Prikl. Diskr. Mat., 2010, no. 4, 91–99

[8] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, Moskva, 1978 | MR

[9] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, IKI, Izhevsk, 2003

[10] Zorkaltsev V. I., Kazazaeva A. V., Mokryi I. V., “Model vzaimodeistviya trekh pelagicheskikh vidov organizmov ozera Baikal”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie (Irkutskii gosudarstvennyi universitet putei soobscheniya), 2008, no. 1, 182–193

[11] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Sistemnaya informatika, 2006, no. 10, 58–113

[12] Medvedev Y. G., “Multi-particle cellular automata models for diffusion simulation”, Methods and tools of parallel programming multicomputers, 6083 (2010), 204–211 | DOI

[13] Dzyuba E. V., Tereza E. P., Pomazkova G. I. i dr., “Svyaz sezonnoi dinamiki zooplanktona, pitaniya ryb i ikh zarazhennosti parazitami v pelagiali ozera Baikal”, Teoriya, metody i instrumenty prinyatiya reshenii v zhivykh, sotsialnykh i tekhnicheskikh sistemakh, Materialy k 19-mu zasedaniyu Mezhdunar. postoyanno deistvuyuschego seminara “Gomeostatika zhivykh, prirodnykh, tekhnicheskikh i sotsialnykh sistem”, Irkutsk, 2001, 90–95

[14] Mazepova G. F., Timoshkin O. A., Melnik N. G., Obolkina L. A., Tanichev A. I., Atlas i opredelitel pelagobiontov Baikala, Nauka, Novosibirsk, 1995

[15] Starikov G. V., Golomyanki Baikala, Nauka, Novosibirsk, 1977