Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_3_a0, author = {I. V. Afanasyev}, title = {A cellular automata model of three organisms populations in lake {Baikal}}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {217--227}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/} }
TY - JOUR AU - I. V. Afanasyev TI - A cellular automata model of three organisms populations in lake Baikal JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 217 EP - 227 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/ LA - ru ID - SJVM_2014_17_3_a0 ER -
I. V. Afanasyev. A cellular automata model of three organisms populations in lake Baikal. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 3, pp. 217-227. http://geodesic.mathdoc.fr/item/SJVM_2014_17_3_a0/
[1] Wolfram S., A New Kind of Science, Wolfram Media Inc., USA, 2002 | MR | Zbl
[2] Chua L. O., CNN: A Paradigm for Complexity, Series A: World Scientific Series on Nonlinear Science, 31, World Scientific Publishing Company, Singapore, 1998 | Zbl
[3] Vanag V. K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh, IKI, Izhevsk, 2008
[4] Madore B., Freedman W., “Computer simulation of the Belousov–Zhabotinski reaction”, Science, 222 (1983), 615–618 | DOI
[5] Bandman O. L., “Cellular Automata Composition Techniques for Spatial Dynamics Simulating”, Simulating Complex Systems by Cellular Automata, eds. A. G. Hoekstra et al., Springer, Berlin, 2010, 81–115 | Zbl
[6] Afanasev I. V., “Issledovanie evolyutsii kletochnykh avtomatov, modeliruyuschikh protsess “razdeleniya faz” na treugolnoi setke”, Prikladnaya diskretnaya matematika, 2010, no. 4, 79–90
[7] Bandman O. L., “A method for construction of cellular automata simulating pattern formation processes”, Prikl. Diskr. Mat., 2010, no. 4, 91–99
[8] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, Moskva, 1978 | MR
[9] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, IKI, Izhevsk, 2003
[10] Zorkaltsev V. I., Kazazaeva A. V., Mokryi I. V., “Model vzaimodeistviya trekh pelagicheskikh vidov organizmov ozera Baikal”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie (Irkutskii gosudarstvennyi universitet putei soobscheniya), 2008, no. 1, 182–193
[11] Bandman O. L., “Kletochno-avtomatnye modeli prostranstvennoi dinamiki”, Sistemnaya informatika, 2006, no. 10, 58–113
[12] Medvedev Y. G., “Multi-particle cellular automata models for diffusion simulation”, Methods and tools of parallel programming multicomputers, 6083 (2010), 204–211 | DOI
[13] Dzyuba E. V., Tereza E. P., Pomazkova G. I. i dr., “Svyaz sezonnoi dinamiki zooplanktona, pitaniya ryb i ikh zarazhennosti parazitami v pelagiali ozera Baikal”, Teoriya, metody i instrumenty prinyatiya reshenii v zhivykh, sotsialnykh i tekhnicheskikh sistemakh, Materialy k 19-mu zasedaniyu Mezhdunar. postoyanno deistvuyuschego seminara “Gomeostatika zhivykh, prirodnykh, tekhnicheskikh i sotsialnykh sistem”, Irkutsk, 2001, 90–95
[14] Mazepova G. F., Timoshkin O. A., Melnik N. G., Obolkina L. A., Tanichev A. I., Atlas i opredelitel pelagobiontov Baikala, Nauka, Novosibirsk, 1995
[15] Starikov G. V., Golomyanki Baikala, Nauka, Novosibirsk, 1977