Numerical and physical modeling of the Lorenz system dynamics
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 191-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes a modification of a power series for the construction of approximate solutions of the Lorenz system. The results of the computer-aided simulation are presented. Also, the physical modeling of the dynamics of the Lorenz system of the processes occurring in the circuit are considered.
@article{SJVM_2014_17_2_a8,
     author = {A. N. Pchelintsev},
     title = {Numerical and physical modeling of the {Lorenz} system dynamics},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {191--201},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a8/}
}
TY  - JOUR
AU  - A. N. Pchelintsev
TI  - Numerical and physical modeling of the Lorenz system dynamics
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 191
EP  - 201
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a8/
LA  - ru
ID  - SJVM_2014_17_2_a8
ER  - 
%0 Journal Article
%A A. N. Pchelintsev
%T Numerical and physical modeling of the Lorenz system dynamics
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 191-201
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a8/
%G ru
%F SJVM_2014_17_2_a8
A. N. Pchelintsev. Numerical and physical modeling of the Lorenz system dynamics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 191-201. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a8/

[1] Lorenz E., “Deterministic nonperiodic flow”, J. of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Landa P. S., Nelineinye kolebaniya i volny, LIBROKOM, M., 2010

[3] Pokrovskii L. A., “Reshenie sistemy uravnenii Lorentsa v asimptoticheskom predele bolshogo chisla Releya. I. Sistema Lorentsa v prosteishei kvantovoi modeli lazera i prilozhenie k nei metoda usredneniya”, Teoreticheskaya i matematicheskaya fizika, 62:2 (1985), 272–290 | MR

[4] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, LIBROKOM, M., 2009

[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial URSS, M., 2004

[6] Yorke J., Yorke E., “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, J. of Statistical Physics, 21:3 (1979), 263–278 | DOI | MR

[7] Sparrow C., The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors, Springer-Verlag, New York, 1982 | MR | Zbl

[8] Kaloshin D. A., “Search for and stabilization of unstable saddle cycles in the Lorenz system”, Diff. Equations, 37:11 (2001), 1636–1639 | DOI | MR | Zbl

[9] Magnitskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 2004

[10] Babushka I., Vitasek E., Prager M., Chislennye protsessy resheniya differentsialnykh uravnenii, Mir, M., 1969 | MR

[11] The MPFR library for multiple-precision floating-point computations with correct rounding, http://www.mpfr.org/

[12] Dmitriev A. S., Panas A. I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002

[13] Texas Instruments Incorporated [SBFS017A]. MPY634: Wide Bandwidth Precision Analog Multiplier (Data Sheet), , 2011 http://www.ti.com/lit/ds/symlink/mpy634.pdf

[14] Matveev N. M., Metody integrirovaniya obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1967 | Zbl

[15] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2011

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1966

[17] Pchelintsev A. N., “O postroenii obobschenno-periodicheskikh reshenii slozhnoi struktury neavtonomnoi sistemy differentsialnykh uravnenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 16:1 (2013), 63–70

[18] Tucker W., “A rigorous ODE solver and Smale's 14th problem”, Foundations of Computational Mathematics, 2:1 (2002), 53–117 | MR | Zbl