Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_2_a8, author = {A. N. Pchelintsev}, title = {Numerical and physical modeling of the {Lorenz} system dynamics}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {191--201}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a8/} }
A. N. Pchelintsev. Numerical and physical modeling of the Lorenz system dynamics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 191-201. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a8/
[1] Lorenz E., “Deterministic nonperiodic flow”, J. of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[2] Landa P. S., Nelineinye kolebaniya i volny, LIBROKOM, M., 2010
[3] Pokrovskii L. A., “Reshenie sistemy uravnenii Lorentsa v asimptoticheskom predele bolshogo chisla Releya. I. Sistema Lorentsa v prosteishei kvantovoi modeli lazera i prilozhenie k nei metoda usredneniya”, Teoreticheskaya i matematicheskaya fizika, 62:2 (1985), 272–290 | MR
[4] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, LIBROKOM, M., 2009
[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial URSS, M., 2004
[6] Yorke J., Yorke E., “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, J. of Statistical Physics, 21:3 (1979), 263–278 | DOI | MR
[7] Sparrow C., The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors, Springer-Verlag, New York, 1982 | MR | Zbl
[8] Kaloshin D. A., “Search for and stabilization of unstable saddle cycles in the Lorenz system”, Diff. Equations, 37:11 (2001), 1636–1639 | DOI | MR | Zbl
[9] Magnitskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 2004
[10] Babushka I., Vitasek E., Prager M., Chislennye protsessy resheniya differentsialnykh uravnenii, Mir, M., 1969 | MR
[11] The MPFR library for multiple-precision floating-point computations with correct rounding, http://www.mpfr.org/
[12] Dmitriev A. S., Panas A. I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002
[13] Texas Instruments Incorporated [SBFS017A]. MPY634: Wide Bandwidth Precision Analog Multiplier (Data Sheet), , 2011 http://www.ti.com/lit/ds/symlink/mpy634.pdf
[14] Matveev N. M., Metody integrirovaniya obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1967 | Zbl
[15] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2011
[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1966
[17] Pchelintsev A. N., “O postroenii obobschenno-periodicheskikh reshenii slozhnoi struktury neavtonomnoi sistemy differentsialnykh uravnenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 16:1 (2013), 63–70
[18] Tucker W., “A rigorous ODE solver and Smale's 14th problem”, Foundations of Computational Mathematics, 2:1 (2002), 53–117 | MR | Zbl