Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_2_a4, author = {Kh. Kh. Imomnazarov and A. A. Mikhailov}, title = {Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {139--147}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/} }
TY - JOUR AU - Kh. Kh. Imomnazarov AU - A. A. Mikhailov TI - Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 139 EP - 147 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/ LA - ru ID - SJVM_2014_17_2_a4 ER -
%0 Journal Article %A Kh. Kh. Imomnazarov %A A. A. Mikhailov %T Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 139-147 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/ %G ru %F SJVM_2014_17_2_a4
Kh. Kh. Imomnazarov; A. A. Mikhailov. Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 139-147. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/
[1] Frenkel Ya. I., “K teorii seismicheskikh i seismoelektricheskikh yavlenii vo vlazhnoi pochve”, Izv. AN SSSR. Ser. geogr. i geofizika, 8:4 (1944), 133–146 | MR
[2] Biot M. A., “Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range”, J. of the Acoustical Society of America, 28 (1956), 168–178 | DOI | MR
[3] Dorovskii V. N., “Kontinualnaya teoriya filtratsii”, Geologiya i geofizika, 1989, no. 7, 39–45
[4] Dorovskii V. N., Perepechko Yu. V., Romenskii E. I., “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111
[5] Blokhin A. M., Dorovsky V. N., Mathematical Modelling in the Theory of Multivelocity Continuum, Nova Science, New York, 1995 | MR
[6] Konyukh G. V., Mikhailenko B. G., “Application of integral Laguerre transformation for solving dynamic seismic problem”, Bull. Novosibirsk Comp. Center. Ser. Mathematical Modeling in Geophysics, 4, Novosibirsk, 1998, 79–91 | Zbl
[7] Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time dependent problems”, Applied Mathematics Letters, 12 (1999), 105–110 | DOI | MR | Zbl
[8] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method”, Pure apll. geophys., 160 (2003), 1207–1224 | DOI
[9] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical viscoelastic modeling by the spectral Laguerre method”, Geophysical Prospecting, 51 (2003), 37–48 | DOI
[10] Imomnazarov Kh. Kh., “A mathematical model for the movement of a conducting liquid through a conducting porous medium: I. Excitation of oscillations of the magnetic field by the surface rayleigh wave”, Math. Comput. Modelling, 24:1 (1996), 79–84 | DOI | MR | Zbl
[11] Imomnazarov Kh. Kh., “Neskolko zamechanii o sisteme uravnenii Bio”, Doklady RAN, 373:4 (2000), 536–537 | Zbl
[12] Imomnazarov Kh. Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Applied Mathematics Letters, 13:3 (2000), 33–35 | DOI | MR | Zbl
[13] Levander A. R., “Fourth order velocity-stress finite-difference scheme”, Proc. 57-th SEG Annual Meeting, New Orleans, 1987, 234–245