Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 139-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the algorithm, based on the application of the spectral Laguerre method for approximation of temporal derivatives as applied to the problem of seismic wave propagation in the porous media with dissipation of energy. The initial system of equations is written down as the first order hyperbolic system in terms of velocities, stresses and pore pressure. For the numerical solution of the problem in question, the method of a combination of the analytical Laguerre transformation and a finite difference method is used. The proposed method of the solution can be considered to be an analog to the known spectral method based on the Fourier transform. However, unlike the Fourier transform, application of the integral Laguerre transform with respect to time allows us to reduce the initial problem to solving a system of equations in which the parameter of division is present only in the right-hand side of equations and has a recurrent dependence. As compared to the time-domain method, with the help of an analytical transformation in the spectral method it is possible to reduce an original problem to solving a system of differential equations, in which there are only derivatives with respect to spatial coordinates. This allows us to apply a known stable difference scheme for recurrent solutions to similar systems. Such an approach is effective when solving dynamic problems for porous media. Thus, because of the presence of the second longitudinal wave with a low velocity, the use of difference schemes in all coordinates for stable solutions requires a consistent small step both with respect to time and space, which inevitably results in an increase in computer costs.
@article{SJVM_2014_17_2_a4,
     author = {Kh. Kh. Imomnazarov and A. A. Mikhailov},
     title = {Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/}
}
TY  - JOUR
AU  - Kh. Kh. Imomnazarov
AU  - A. A. Mikhailov
TI  - Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 139
EP  - 147
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/
LA  - ru
ID  - SJVM_2014_17_2_a4
ER  - 
%0 Journal Article
%A Kh. Kh. Imomnazarov
%A A. A. Mikhailov
%T Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 139-147
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/
%G ru
%F SJVM_2014_17_2_a4
Kh. Kh. Imomnazarov; A. A. Mikhailov. Application of a~spectral method for numerical modeling of propagation of seismic waves in porous media for dissipative case. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 139-147. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a4/

[1] Frenkel Ya. I., “K teorii seismicheskikh i seismoelektricheskikh yavlenii vo vlazhnoi pochve”, Izv. AN SSSR. Ser. geogr. i geofizika, 8:4 (1944), 133–146 | MR

[2] Biot M. A., “Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range”, J. of the Acoustical Society of America, 28 (1956), 168–178 | DOI | MR

[3] Dorovskii V. N., “Kontinualnaya teoriya filtratsii”, Geologiya i geofizika, 1989, no. 7, 39–45

[4] Dorovskii V. N., Perepechko Yu. V., Romenskii E. I., “Volnovye protsessy v nasyschennykh poristykh uprugodeformiruemykh sredakh”, Fizika goreniya i vzryva, 1993, no. 1, 100–111

[5] Blokhin A. M., Dorovsky V. N., Mathematical Modelling in the Theory of Multivelocity Continuum, Nova Science, New York, 1995 | MR

[6] Konyukh G. V., Mikhailenko B. G., “Application of integral Laguerre transformation for solving dynamic seismic problem”, Bull. Novosibirsk Comp. Center. Ser. Mathematical Modeling in Geophysics, 4, Novosibirsk, 1998, 79–91 | Zbl

[7] Mikhailenko B. G., “Spectral Laguerre method for the approximate solution of time dependent problems”, Applied Mathematics Letters, 12 (1999), 105–110 | DOI | MR | Zbl

[8] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method”, Pure apll. geophys., 160 (2003), 1207–1224 | DOI

[9] Mikhailenko B. G., Mikhailov A. A., Reshetova G. V., “Numerical viscoelastic modeling by the spectral Laguerre method”, Geophysical Prospecting, 51 (2003), 37–48 | DOI

[10] Imomnazarov Kh. Kh., “A mathematical model for the movement of a conducting liquid through a conducting porous medium: I. Excitation of oscillations of the magnetic field by the surface rayleigh wave”, Math. Comput. Modelling, 24:1 (1996), 79–84 | DOI | MR | Zbl

[11] Imomnazarov Kh. Kh., “Neskolko zamechanii o sisteme uravnenii Bio”, Doklady RAN, 373:4 (2000), 536–537 | Zbl

[12] Imomnazarov Kh. Kh., “Some remarks on the Biot system of equations describing wave propagation in a porous medium”, Applied Mathematics Letters, 13:3 (2000), 33–35 | DOI | MR | Zbl

[13] Levander A. R., “Fourth order velocity-stress finite-difference scheme”, Proc. 57-th SEG Annual Meeting, New Orleans, 1987, 234–245