Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_2_a3, author = {A. V. Burmistrov and M. A. Korotchenko}, title = {Weight {Monte} {Carlo} algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {125--138}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/} }
TY - JOUR AU - A. V. Burmistrov AU - M. A. Korotchenko TI - Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 125 EP - 138 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/ LA - ru ID - SJVM_2014_17_2_a3 ER -
%0 Journal Article %A A. V. Burmistrov %A M. A. Korotchenko %T Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 125-138 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/ %G ru %F SJVM_2014_17_2_a3
A. V. Burmistrov; M. A. Korotchenko. Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-138. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/
[1] Korotchenko M. A., “Statisticheskie algoritmy tsennostnogo modelirovaniya dlya resheniya uravneniya Smolukhovskogo”, Vychislitelnye tekhnologii, 13, cpets. vypusk No 4 (2008), 68–74 | Zbl
[2] Korotchenko M. A., Mikhailov G. A., Rogazinskii S. V., “Modifikatsii vesovykh algoritmov metoda Monte-Karlo dlya resheniya nelineinykh kineticheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 47:12 (2007), 2110–2121 | MR
[3] Lushnikov A. A., “Nekotorye novye aspekty teorii koagulyatsii”, Izv. AN SSSR. Fiz. atmosfery i okeana, 14:10 (1978), 738–743
[4] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie (Metod Monte-Karlo), Izdatelskii tsentr “Akademiya”, Moskva, 2006
[5] Mikhailov G. A., Rogazinskii S. V., “Vesovye metody Monte-Karlo dlya priblizhennogo resheniya nelineinogo uravneniya Boltsmana”, Sib. mat. zhurn., 43:3 (2002), 620–628 | MR | Zbl
[6] Mikhailov G. A., Rogazinskii S. V., Ureva N. M., “Vesovoi metod Monte-Karlo dlya priblizhennogo resheniya nelineinogo uravneniya koagulyatsii”, Zhurn. vychisl. matem. i mat. fiziki, 46:4 (2006), 714–726 | MR | Zbl
[7] Flory P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953
[8] Korotchenko M. A., “Value Monte Carlo algorithms for estimating the solution to the coagulation equation”, Monte Carlo and Quasi-Monte Carlo Methods 2010, Springer Proceedings in Mathematics Statistics, 23, eds. L. Plaskota, H. Wozniakowski, Springer, 2012, 511–522 | Zbl
[9] Mikhailov G. A., Parametric Estimates by the Monte Carlo Method, VSP, Utrecht, 1999 | MR | Zbl
[10] Spouge J. L., “Solutions and critical times for the monodisperse coagulation equation when $a(i,j)=A+B(i+j)+Cij$”, J. Phys. A: Math. Gen., 16:4 (1983), 767–773 | DOI | MR | Zbl