Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Smoluchowski equation with linear coagulation coefficients depending on two parameters is considered. We construct weight algorithms for estimating various linear functionals in an ensemble, which is governed by the equation under study. The algorithms constructed allow us to estimate the functionals for various parameters as well as parametric derivatives using the same set of trajectories. Moreover, we construct the value algorithms and analyze their efficiency for estimating the total monomer concentration as well as the total monomer and dimer concentration in the ensemble. A considerable gain in computational costs is achieved via the approximate value simulation of the time between interactions combined with the value simulation of the interacting pair number.
@article{SJVM_2014_17_2_a3,
     author = {A. V. Burmistrov and M. A. Korotchenko},
     title = {Weight {Monte} {Carlo} algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {125--138},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/}
}
TY  - JOUR
AU  - A. V. Burmistrov
AU  - M. A. Korotchenko
TI  - Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 125
EP  - 138
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/
LA  - ru
ID  - SJVM_2014_17_2_a3
ER  - 
%0 Journal Article
%A A. V. Burmistrov
%A M. A. Korotchenko
%T Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 125-138
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/
%G ru
%F SJVM_2014_17_2_a3
A. V. Burmistrov; M. A. Korotchenko. Weight Monte Carlo algorithms for estimation and parametric analysis of the solution to the kinetic coagulation equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 2, pp. 125-138. http://geodesic.mathdoc.fr/item/SJVM_2014_17_2_a3/

[1] Korotchenko M. A., “Statisticheskie algoritmy tsennostnogo modelirovaniya dlya resheniya uravneniya Smolukhovskogo”, Vychislitelnye tekhnologii, 13, cpets. vypusk No 4 (2008), 68–74 | Zbl

[2] Korotchenko M. A., Mikhailov G. A., Rogazinskii S. V., “Modifikatsii vesovykh algoritmov metoda Monte-Karlo dlya resheniya nelineinykh kineticheskikh uravnenii”, Zhurn. vychisl. matem. i mat. fiziki, 47:12 (2007), 2110–2121 | MR

[3] Lushnikov A. A., “Nekotorye novye aspekty teorii koagulyatsii”, Izv. AN SSSR. Fiz. atmosfery i okeana, 14:10 (1978), 738–743

[4] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie (Metod Monte-Karlo), Izdatelskii tsentr “Akademiya”, Moskva, 2006

[5] Mikhailov G. A., Rogazinskii S. V., “Vesovye metody Monte-Karlo dlya priblizhennogo resheniya nelineinogo uravneniya Boltsmana”, Sib. mat. zhurn., 43:3 (2002), 620–628 | MR | Zbl

[6] Mikhailov G. A., Rogazinskii S. V., Ureva N. M., “Vesovoi metod Monte-Karlo dlya priblizhennogo resheniya nelineinogo uravneniya koagulyatsii”, Zhurn. vychisl. matem. i mat. fiziki, 46:4 (2006), 714–726 | MR | Zbl

[7] Flory P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953

[8] Korotchenko M. A., “Value Monte Carlo algorithms for estimating the solution to the coagulation equation”, Monte Carlo and Quasi-Monte Carlo Methods 2010, Springer Proceedings in Mathematics Statistics, 23, eds. L. Plaskota, H. Wozniakowski, Springer, 2012, 511–522 | Zbl

[9] Mikhailov G. A., Parametric Estimates by the Monte Carlo Method, VSP, Utrecht, 1999 | MR | Zbl

[10] Spouge J. L., “Solutions and critical times for the monodisperse coagulation equation when $a(i,j)=A+B(i+j)+Cij$”, J. Phys. A: Math. Gen., 16:4 (1983), 767–773 | DOI | MR | Zbl