Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_1_a6, author = {M. Prashanth and D. K. Gupta and S. Singh}, title = {Semilocal convergence for the {Super-Halley's} method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {83--99}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/} }
TY - JOUR AU - M. Prashanth AU - D. K. Gupta AU - S. Singh TI - Semilocal convergence for the Super-Halley's method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 83 EP - 99 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/ LA - ru ID - SJVM_2014_17_1_a6 ER -
M. Prashanth; D. K. Gupta; S. Singh. Semilocal convergence for the Super-Halley's method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 83-99. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/
[1] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl
[2] Ganesh M., Joshi M. C., “Numerical solvability of Hammerstein integral equations of mixed type”, IMA J. of Numerical Analysis, 11 (1991), 21–31 | DOI | MR | Zbl
[3] Gutiérrez J. M., Hernández M. A., “Recurrence relations for the Super-Halley method”, Comput. Math. Appl., 36 (1998), 1–8 | DOI | MR | Zbl
[4] Ezquerro J. A., Hernández M. A., “Avoiding the computation of the second Frëchet-derivative in the convex acceleration of Newton's method”, J. of Computational and Applied Mathematics, 96 (1998), 1–12 | DOI | MR | Zbl
[5] Hernández M. A., Salanova M. A., “Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method”, J. of Computational and Applied Mathematics, 126 (2000), 131–143 | DOI | MR | Zbl
[6] Hernández M. A., “Chebyshev's approximation algorithms and applications”, Comput. Math. with Appl., 41:3–4 (2001), 433–445 | DOI | MR | Zbl
[7] Ezquerro J. A., Hernandez M. A., “On the $R$-order of the Halley method”, J. Math. Anal. Appl., 303 (2005), 591–601 | DOI | MR | Zbl
[8] Xintao Ye, Chong Li, “Convergence of the family of the deformed Euler–Halley iterations under the Hölder condition of the second derivative”, J. of Computational and Applied Mathematics, 194 (2006), 294–308 | DOI | MR | Zbl
[9] Yueqing Zhao, Qingbiao Wu, “Newton–Kantorovich theorem for a family of modified Halley's method under Hölder continuity conditions in Banach space”, Applied Mathematics and Computation, 202 (2008), 243–251 | DOI | MR | Zbl
[10] Parida P. K., Gupta D. K., “Semilocal convergence of a family of third-order Chebyshev-type methods under a mild differentiability condition”, Int. J. Comput. Math., 87:15 (2010), 3405–3419 | DOI | MR | Zbl
[11] Prashanth M., Gupta D. K., “Recurrence relations for Super-Halley's method under Hölder continuous second derivative in Banach spaces”, Kodai Mathematical J., 36:1 (2013), 119–136 | DOI | MR | Zbl