Semilocal convergence for the Super-Halley's method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 83-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semilocal convergence of Super-Halley's method for solving nonlinear equations in Banach spaces is established under the assumption that the second Frëchet derivative satisfies the $\omega$-continuity condition. This condition is milder than the well known Lipschitz and Hölder continuity conditions. The importance of our work lies in the fact that numerical examples can be given to show that our approach is successful even in cases where the Lipschitz and Hölder continuity conditions fail. Difficult computation of the second Frëchet derivative is also avoided by replacing it with a divided difference containing only the first Frёchet derivatives. A number of recurrence relations based on two parameters are derived. A convergence theorem is established to estimate a priori error bounds along with the domains of existence and uniqueness of the solutions. The $R$-order of convergence of the method is shown to be at least three. Two numerical examples are worked out to demonstrate the efficiency of our method. It is observed that in both examples the existence and uniqueness regions of solution are improved when compared with those obtained in [7].
@article{SJVM_2014_17_1_a6,
     author = {M. Prashanth and D. K. Gupta and S. Singh},
     title = {Semilocal convergence for the {Super-Halley's} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {83--99},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/}
}
TY  - JOUR
AU  - M. Prashanth
AU  - D. K. Gupta
AU  - S. Singh
TI  - Semilocal convergence for the Super-Halley's method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 83
EP  - 99
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/
LA  - ru
ID  - SJVM_2014_17_1_a6
ER  - 
%0 Journal Article
%A M. Prashanth
%A D. K. Gupta
%A S. Singh
%T Semilocal convergence for the Super-Halley's method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 83-99
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/
%G ru
%F SJVM_2014_17_1_a6
M. Prashanth; D. K. Gupta; S. Singh. Semilocal convergence for the Super-Halley's method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 83-99. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a6/

[1] Kantorovich L. V., Akilov G. P., Functional Analysis, Pergamon Press, Oxford, 1982 | MR | Zbl

[2] Ganesh M., Joshi M. C., “Numerical solvability of Hammerstein integral equations of mixed type”, IMA J. of Numerical Analysis, 11 (1991), 21–31 | DOI | MR | Zbl

[3] Gutiérrez J. M., Hernández M. A., “Recurrence relations for the Super-Halley method”, Comput. Math. Appl., 36 (1998), 1–8 | DOI | MR | Zbl

[4] Ezquerro J. A., Hernández M. A., “Avoiding the computation of the second Frëchet-derivative in the convex acceleration of Newton's method”, J. of Computational and Applied Mathematics, 96 (1998), 1–12 | DOI | MR | Zbl

[5] Hernández M. A., Salanova M. A., “Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method”, J. of Computational and Applied Mathematics, 126 (2000), 131–143 | DOI | MR | Zbl

[6] Hernández M. A., “Chebyshev's approximation algorithms and applications”, Comput. Math. with Appl., 41:3–4 (2001), 433–445 | DOI | MR | Zbl

[7] Ezquerro J. A., Hernandez M. A., “On the $R$-order of the Halley method”, J. Math. Anal. Appl., 303 (2005), 591–601 | DOI | MR | Zbl

[8] Xintao Ye, Chong Li, “Convergence of the family of the deformed Euler–Halley iterations under the Hölder condition of the second derivative”, J. of Computational and Applied Mathematics, 194 (2006), 294–308 | DOI | MR | Zbl

[9] Yueqing Zhao, Qingbiao Wu, “Newton–Kantorovich theorem for a family of modified Halley's method under Hölder continuity conditions in Banach space”, Applied Mathematics and Computation, 202 (2008), 243–251 | DOI | MR | Zbl

[10] Parida P. K., Gupta D. K., “Semilocal convergence of a family of third-order Chebyshev-type methods under a mild differentiability condition”, Int. J. Comput. Math., 87:15 (2010), 3405–3419 | DOI | MR | Zbl

[11] Prashanth M., Gupta D. K., “Recurrence relations for Super-Halley's method under Hölder continuous second derivative in Banach spaces”, Kodai Mathematical J., 36:1 (2013), 119–136 | DOI | MR | Zbl