Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_1_a5, author = {R. I. Okuonghae and M. N. O. Ikhile}, title = {A family of highly stable second derivative block methods for stiff {IVPs} in {ODEs}}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {67--81}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/} }
TY - JOUR AU - R. I. Okuonghae AU - M. N. O. Ikhile TI - A family of highly stable second derivative block methods for stiff IVPs in ODEs JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 67 EP - 81 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/ LA - ru ID - SJVM_2014_17_1_a5 ER -
%0 Journal Article %A R. I. Okuonghae %A M. N. O. Ikhile %T A family of highly stable second derivative block methods for stiff IVPs in ODEs %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 67-81 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/ %G ru %F SJVM_2014_17_1_a5
R. I. Okuonghae; M. N. O. Ikhile. A family of highly stable second derivative block methods for stiff IVPs in ODEs. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/
[1] Butcher J. C., Numerical Methods for Ordinary Differential Equations, Second Edition, Wiley, Chichester, 2008 | MR | Zbl
[2] Butcher J. C., “A modified multistep method for the numerical integration of ordinary differential equations”, J. Assoc. Comput. Mach., 12 (1965), 124–135 | DOI | MR | Zbl
[3] Burrage K., Parallel and Sequential Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1993 | MR
[4] Cash J. R., “Block Runge–Kutta methods for the numerical integration of initial value problems in ordinary differential equations. Part I. The nonstiff case”, Mathematical Computation, 40:161 (1983), 175–191 | MR | Zbl
[5] Chu M. T., Hamilton H., “Parallel solution of ODEs by multi-block methods”, SIAM J. on Scientific and Statistical Computing, 8:3 (1987), 342–353 | DOI | MR | Zbl
[6] Dahlquist G., “A special stability problem for linear multistep methods”, BIT, 3 (1963), 27–43 | DOI | MR | Zbl
[7] Dahlquist G., “On accuracy and unconditional stability of linear multistep methods for second order differential equations”, BIT Numerical Mathematics, 18:2 (1978), 133–136 | DOI | MR | Zbl
[8] Enright W. H., “Second derivative multistep methods for stiff ODEs”, SIAM J. Numer. Anal., 11:2 (1974), 321–331 | DOI | MR | Zbl
[9] Enright W. H., “Continuous numerical methods for ODEs with defect control”, J. Comput. Appl. Math., 125:1–2 (2000), 159–170 | DOI | MR | Zbl
[10] Enright W. H., Hull T. E., Lindberg B., “Comparing numerical methods for stiff systems of ODEs”, BIT Numerical Mathematics, 15:1 (1975), 10–48 | DOI | MR | Zbl
[11] Fatunla S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1988 | MR | Zbl
[12] Fatunla S. O., “Block methods for second order ODEs”, International J. of Computer Mathematics, 41 (1991), 55–63 | DOI | Zbl
[13] Gear C. W., “Hybrid multistep methods for initial value problems in ordinary differential equations”, SIAM J. Numer. Anal., 2 (1965), 69–86 | MR | Zbl
[14] Gear C. W., Xu X., “Parallelism across time in ODEs”, Applied Numerical Mathematics, 11 (1965), 45–68 | DOI | MR
[15] Hairer E., Wanner G., Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl
[16] Higham J. D., Higham J. N., Matlab Guide, SIAM, Philadelphia, 2000 | MR
[17] Ikhile M. N. O., Okuonghae R. I., “Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs”, J. Nig. Assoc. Math. Physics, 11 (2007), 175–190
[18] Jator S. N., “Solving second order initial value problems by a hybrid multistep method without predictors”, Applied Mathematics and Computation, 217:8 (2010), 4036–4046 | DOI | MR | Zbl
[19] Kayode S. J., “An efficient zero-stable numerical method for fourth-order differential equations”, International J. of Mathematics and Mathematical Sciences, 2008 (2008), Article ID 364021, 10 pp. | MR
[20] Kaps P., “Rosenbrock-type methods”, Numerical Methods for Solving Stiff Initial Value Problems, eds. Dahlquist G., Jeltsch R., Inst. für Geometrie und praktische Math. (IGPM) der RWTH Aachen, Germany, Aachen, 1981, Bericht No 9
[21] Lambert J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973 | Zbl
[22] Majid Z. A., Azmi N. A., Suleiman M., “Solving second order ordinary differential equations using two point four step direct implicit block method”, European J. of Scientific Research, 31:1 (2009), 29–36
[23] Okuonghae R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph. D. Thesis, Dept. of Math. University of Benin, Nigeria, Benin City, 2008
[24] Okuonghae R. I., “A class of continuous hybrid LMM for stiff IVPs in ODEs”, Annals of the Alexandru Ioan Cuza University. Mathematics, 58:2 (2012), 239–258 | MR | Zbl
[25] Okuonghae R. I., Ikhile M. N. O., “A continuous formulation of $A(\alpha)$-stable second derivative linear multistep methods for stiff IVPs and ODEs”, J. of Algorithms and Comp. Technology, 6:1 (2011), 79–101 | DOI | MR
[26] Okuonghae R. I., Ogunleye S. O., Ikhile M. N. O., “Some explicit general linear methods for IVPs in ODEs”, J. of Algorithms and Comp. Technology, 7:1 (2013), 41–63 | DOI | MR | Zbl
[27] Okuonghae R. I., Ikhile M. N. O., “$A(\alpha)$-stable linear multistep methods for stiff IVPs in ODEs”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 50:1 (2011), 75–92 | MR
[28] Okuonghae R. I., Ikhile M. N. O., “The numerical solution of stiff IVPs in ODEs using modified second derivative BDF”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 51:1 (2012), 51–77 | MR | Zbl
[29] Okuonghae R. I., Ikhile M. N. O., “On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs and ODEs”, J. of Numerical Analysis and Appl., 15:3 (2012), 231–241 | DOI | MR
[30] Okuonghae R. I., Ikhile M. N. O., “A class of hybrid linear multistep methods with $A(\alpha)$-stability properties for stiff IVPs in ODEs”, J. of Numerical Mathematics, 21:2 (2013), 157–172 | DOI | MR | Zbl
[31] Voss O., “Fourth-order parallel Rosebrock methods for stiff systems”, J. Mathematical and Comp. Modelling, 40 (2004), 1193–1198 | DOI | MR | Zbl
[32] Widlund O., “A note on unconditionally stable linear multistep methods”, BIT, 7 (1967), 65–70 | DOI | MR | Zbl
[33] Zarina B. I., Khairil I. O., Mohammed S., “Variable step block backward differentiation formula for solving first order stiff ODEs”, Proc. WCE, 2166, WCE, London, 2007, 785–789