A family of highly stable second derivative block methods for stiff IVPs in ODEs
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 67-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers a class of highly stable block methods for the numerical solution of initial value problems (IVPs) in ordinary differential equations (ODEs). The boundary locus of the proposed parallel one-block, $r$-output point algorithms shows that the new schemes are $A$-stable for output points $r=2(2)8$ and $A(\alpha)$-stable for output points $r=10(2)20$, where $r$ is the number of processors in a particular block method in the family. Numerical results of the block methods are compared with a second derivative linear multistep method in [8].
@article{SJVM_2014_17_1_a5,
     author = {R. I. Okuonghae and M. N. O. Ikhile},
     title = {A family of highly stable second derivative block methods for stiff {IVPs} in {ODEs}},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {67--81},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/}
}
TY  - JOUR
AU  - R. I. Okuonghae
AU  - M. N. O. Ikhile
TI  - A family of highly stable second derivative block methods for stiff IVPs in ODEs
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 67
EP  - 81
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/
LA  - ru
ID  - SJVM_2014_17_1_a5
ER  - 
%0 Journal Article
%A R. I. Okuonghae
%A M. N. O. Ikhile
%T A family of highly stable second derivative block methods for stiff IVPs in ODEs
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 67-81
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/
%G ru
%F SJVM_2014_17_1_a5
R. I. Okuonghae; M. N. O. Ikhile. A family of highly stable second derivative block methods for stiff IVPs in ODEs. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 67-81. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a5/

[1] Butcher J. C., Numerical Methods for Ordinary Differential Equations, Second Edition, Wiley, Chichester, 2008 | MR | Zbl

[2] Butcher J. C., “A modified multistep method for the numerical integration of ordinary differential equations”, J. Assoc. Comput. Mach., 12 (1965), 124–135 | DOI | MR | Zbl

[3] Burrage K., Parallel and Sequential Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1993 | MR

[4] Cash J. R., “Block Runge–Kutta methods for the numerical integration of initial value problems in ordinary differential equations. Part I. The nonstiff case”, Mathematical Computation, 40:161 (1983), 175–191 | MR | Zbl

[5] Chu M. T., Hamilton H., “Parallel solution of ODEs by multi-block methods”, SIAM J. on Scientific and Statistical Computing, 8:3 (1987), 342–353 | DOI | MR | Zbl

[6] Dahlquist G., “A special stability problem for linear multistep methods”, BIT, 3 (1963), 27–43 | DOI | MR | Zbl

[7] Dahlquist G., “On accuracy and unconditional stability of linear multistep methods for second order differential equations”, BIT Numerical Mathematics, 18:2 (1978), 133–136 | DOI | MR | Zbl

[8] Enright W. H., “Second derivative multistep methods for stiff ODEs”, SIAM J. Numer. Anal., 11:2 (1974), 321–331 | DOI | MR | Zbl

[9] Enright W. H., “Continuous numerical methods for ODEs with defect control”, J. Comput. Appl. Math., 125:1–2 (2000), 159–170 | DOI | MR | Zbl

[10] Enright W. H., Hull T. E., Lindberg B., “Comparing numerical methods for stiff systems of ODEs”, BIT Numerical Mathematics, 15:1 (1975), 10–48 | DOI | MR | Zbl

[11] Fatunla S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1988 | MR | Zbl

[12] Fatunla S. O., “Block methods for second order ODEs”, International J. of Computer Mathematics, 41 (1991), 55–63 | DOI | Zbl

[13] Gear C. W., “Hybrid multistep methods for initial value problems in ordinary differential equations”, SIAM J. Numer. Anal., 2 (1965), 69–86 | MR | Zbl

[14] Gear C. W., Xu X., “Parallelism across time in ODEs”, Applied Numerical Mathematics, 11 (1965), 45–68 | DOI | MR

[15] Hairer E., Wanner G., Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl

[16] Higham J. D., Higham J. N., Matlab Guide, SIAM, Philadelphia, 2000 | MR

[17] Ikhile M. N. O., Okuonghae R. I., “Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs”, J. Nig. Assoc. Math. Physics, 11 (2007), 175–190

[18] Jator S. N., “Solving second order initial value problems by a hybrid multistep method without predictors”, Applied Mathematics and Computation, 217:8 (2010), 4036–4046 | DOI | MR | Zbl

[19] Kayode S. J., “An efficient zero-stable numerical method for fourth-order differential equations”, International J. of Mathematics and Mathematical Sciences, 2008 (2008), Article ID 364021, 10 pp. | MR

[20] Kaps P., “Rosenbrock-type methods”, Numerical Methods for Solving Stiff Initial Value Problems, eds. Dahlquist G., Jeltsch R., Inst. für Geometrie und praktische Math. (IGPM) der RWTH Aachen, Germany, Aachen, 1981, Bericht No 9

[21] Lambert J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973 | Zbl

[22] Majid Z. A., Azmi N. A., Suleiman M., “Solving second order ordinary differential equations using two point four step direct implicit block method”, European J. of Scientific Research, 31:1 (2009), 29–36

[23] Okuonghae R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph. D. Thesis, Dept. of Math. University of Benin, Nigeria, Benin City, 2008

[24] Okuonghae R. I., “A class of continuous hybrid LMM for stiff IVPs in ODEs”, Annals of the Alexandru Ioan Cuza University. Mathematics, 58:2 (2012), 239–258 | MR | Zbl

[25] Okuonghae R. I., Ikhile M. N. O., “A continuous formulation of $A(\alpha)$-stable second derivative linear multistep methods for stiff IVPs and ODEs”, J. of Algorithms and Comp. Technology, 6:1 (2011), 79–101 | DOI | MR

[26] Okuonghae R. I., Ogunleye S. O., Ikhile M. N. O., “Some explicit general linear methods for IVPs in ODEs”, J. of Algorithms and Comp. Technology, 7:1 (2013), 41–63 | DOI | MR | Zbl

[27] Okuonghae R. I., Ikhile M. N. O., “$A(\alpha)$-stable linear multistep methods for stiff IVPs in ODEs”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 50:1 (2011), 75–92 | MR

[28] Okuonghae R. I., Ikhile M. N. O., “The numerical solution of stiff IVPs in ODEs using modified second derivative BDF”, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 51:1 (2012), 51–77 | MR | Zbl

[29] Okuonghae R. I., Ikhile M. N. O., “On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs and ODEs”, J. of Numerical Analysis and Appl., 15:3 (2012), 231–241 | DOI | MR

[30] Okuonghae R. I., Ikhile M. N. O., “A class of hybrid linear multistep methods with $A(\alpha)$-stability properties for stiff IVPs in ODEs”, J. of Numerical Mathematics, 21:2 (2013), 157–172 | DOI | MR | Zbl

[31] Voss O., “Fourth-order parallel Rosebrock methods for stiff systems”, J. Mathematical and Comp. Modelling, 40 (2004), 1193–1198 | DOI | MR | Zbl

[32] Widlund O., “A note on unconditionally stable linear multistep methods”, BIT, 7 (1967), 65–70 | DOI | MR | Zbl

[33] Zarina B. I., Khairil I. O., Mohammed S., “Variable step block backward differentiation formula for solving first order stiff ODEs”, Proc. WCE, 2166, WCE, London, 2007, 785–789