New modified optimal families of King's and Traub--Ostrowski's method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on quadratically convergent Schröder's method, we derive many new interesting families of fourth-order multipoint iterative methods without memory for obtaining simple roots of nonlinear equations by using the weight function approach. The classical King's family of fourth-order methods and Traub–Ostrowski's method are obtained as special cases. According to the Kung–Traub conjecture, these methods have the maximal efficiency index because only three functional values are needed per step. Therefore, the fourth-order family of King's method and Traub–Ostrowski's method are the main findings of the present work. The performance of proposed multipoint methods is compared with their closest competitors, namely, King's family, Traub–Ostrowski's method, and Jarratt's method in a series of numerical experiments. All the methods considered here are found to be effective and comparable to the similar robust methods available in the literature.
@article{SJVM_2014_17_1_a2,
     author = {Ramandeep Behl and V. Kanwar and Kapil K. Sharma},
     title = {New modified optimal families of {King's} and {Traub--Ostrowski's} method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/}
}
TY  - JOUR
AU  - Ramandeep Behl
AU  - V. Kanwar
AU  - Kapil K. Sharma
TI  - New modified optimal families of King's and Traub--Ostrowski's method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 31
EP  - 42
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/
LA  - ru
ID  - SJVM_2014_17_1_a2
ER  - 
%0 Journal Article
%A Ramandeep Behl
%A V. Kanwar
%A Kapil K. Sharma
%T New modified optimal families of King's and Traub--Ostrowski's method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 31-42
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/
%G ru
%F SJVM_2014_17_1_a2
Ramandeep Behl; V. Kanwar; Kapil K. Sharma. New modified optimal families of King's and Traub--Ostrowski's method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/

[1] Jarratt P., “Some efficient fourth-order multipoint methods for solving equations”, BIT, 9:2 (1969), 119–124 | DOI | MR | Zbl

[2] Kanwar V., Behl Ramandeep, Sharma K. K., “Simply constructed family of an Ostrowski's method with optimal order of convergence”, Comput. Math. Appl., 62:11 (2011), 4021–4027 | DOI | MR | Zbl

[3] King R. F., “A family of fourth order methods for nonlinear equations”, SIAM J. Numer. Anal., 10:5 (1973), 876–879 | DOI | MR | Zbl

[4] Kung H. T., Traub J. F., “Optimal order of one-point and multipoint iteration”, J. Assoc. Comput. Mach., 21:4 (1974), 643–651 | DOI | MR | Zbl

[5] Ostrowski A. M., Solutions of Equations and System of Equations, Academic Press, New York, 1960 | Zbl

[6] Ostrowski A. M., Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York, 1973 | MR | Zbl

[7] Schröder E., “Über unendlich viele algorithmen zur auflösung der gleichungen”, Math. Ann., 2:2 (1870), 317–365 | DOI | MR

[8] Traub J. F., Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl

[9] Werner W., “Some improvement of classical methods for the numerical solution of nonlinear equations”, Lect. Notes Math., 878, 1981, 426–440 | DOI | MR | Zbl