@article{SJVM_2014_17_1_a2,
author = {Ramandeep Behl and V. Kanwar and Kapil K. Sharma},
title = {New modified optimal families of {King's} and {Traub{\textendash}Ostrowski's} method},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {31--42},
year = {2014},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/}
}
TY - JOUR AU - Ramandeep Behl AU - V. Kanwar AU - Kapil K. Sharma TI - New modified optimal families of King's and Traub–Ostrowski's method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 31 EP - 42 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/ LA - ru ID - SJVM_2014_17_1_a2 ER -
Ramandeep Behl; V. Kanwar; Kapil K. Sharma. New modified optimal families of King's and Traub–Ostrowski's method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a2/
[1] Jarratt P., “Some efficient fourth-order multipoint methods for solving equations”, BIT, 9:2 (1969), 119–124 | DOI | MR | Zbl
[2] Kanwar V., Behl Ramandeep, Sharma K. K., “Simply constructed family of an Ostrowski's method with optimal order of convergence”, Comput. Math. Appl., 62:11 (2011), 4021–4027 | DOI | MR | Zbl
[3] King R. F., “A family of fourth order methods for nonlinear equations”, SIAM J. Numer. Anal., 10:5 (1973), 876–879 | DOI | MR | Zbl
[4] Kung H. T., Traub J. F., “Optimal order of one-point and multipoint iteration”, J. Assoc. Comput. Mach., 21:4 (1974), 643–651 | DOI | MR | Zbl
[5] Ostrowski A. M., Solutions of Equations and System of Equations, Academic Press, New York, 1960 | Zbl
[6] Ostrowski A. M., Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York, 1973 | MR | Zbl
[7] Schröder E., “Über unendlich viele algorithmen zur auflösung der gleichungen”, Math. Ann., 2:2 (1870), 317–365 | DOI | MR
[8] Traub J. F., Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, NJ, 1964 | MR | Zbl
[9] Werner W., “Some improvement of classical methods for the numerical solution of nonlinear equations”, Lect. Notes Math., 878, 1981, 426–440 | DOI | MR | Zbl