An analogue of Newton--Cotes formula with four nodes for a~function with a~boundary-layer component
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 313-323
Voir la notice de l'article provenant de la source Math-Net.Ru
The construction of the Newton–Cotes formulas is based on approximating an integrand by the Lagrange polynomial. The error of such quadrature formulas can be serious for a function with a boundary-layer component. In this paper, an analogue to the Newton–Cotes rule with four nodes is constructed. The construction is based on using non-polynomial interpolation that is accurate for a boundary layer component. Estimates of the accuracy of the quadrature rule, uniform on gradients of the boundary layer component, are obtained. Numerical experiments have been performed.
@article{SJVM_2013_16_4_a1,
author = {A. I. Zadorin and N. A. Zadorin},
title = {An analogue of {Newton--Cotes} formula with four nodes for a~function with a~boundary-layer component},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {313--323},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/}
}
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - An analogue of Newton--Cotes formula with four nodes for a~function with a~boundary-layer component JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 313 EP - 323 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/ LA - ru ID - SJVM_2013_16_4_a1 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T An analogue of Newton--Cotes formula with four nodes for a~function with a~boundary-layer component %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2013 %P 313-323 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/ %G ru %F SJVM_2013_16_4_a1
A. I. Zadorin; N. A. Zadorin. An analogue of Newton--Cotes formula with four nodes for a~function with a~boundary-layer component. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 313-323. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/