An analogue of Newton–Cotes formula with four nodes for a function with a boundary-layer component
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 313-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of the Newton–Cotes formulas is based on approximating an integrand by the Lagrange polynomial. The error of such quadrature formulas can be serious for a function with a boundary-layer component. In this paper, an analogue to the Newton–Cotes rule with four nodes is constructed. The construction is based on using non-polynomial interpolation that is accurate for a boundary layer component. Estimates of the accuracy of the quadrature rule, uniform on gradients of the boundary layer component, are obtained. Numerical experiments have been performed.
@article{SJVM_2013_16_4_a1,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {An analogue of {Newton{\textendash}Cotes} formula with four nodes for a~function with a~boundary-layer component},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {313--323},
     year = {2013},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - An analogue of Newton–Cotes formula with four nodes for a function with a boundary-layer component
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 313
EP  - 323
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/
LA  - ru
ID  - SJVM_2013_16_4_a1
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T An analogue of Newton–Cotes formula with four nodes for a function with a boundary-layer component
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 313-323
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/
%G ru
%F SJVM_2013_16_4_a1
A. I. Zadorin; N. A. Zadorin. An analogue of Newton–Cotes formula with four nodes for a function with a boundary-layer component. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 313-323. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a1/

[1] Berezin I. S., Zhidkov N. P., Metody vychislenii, Nauka, M., 1966

[2] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[3] Zadorin A. I., “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 10:3 (2007), 267–275

[4] Zadorin A. I., Zadorin N. A., “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zhurn. vychisl. matem. i mat. fiziki, 50:2 (2010), 221–233 | MR | Zbl

[5] Zadorin A. I., “Spline interpolation of functions with a boundary layer component”, Int. J. of Num. Analysis and Modeling. Series B, 2:2–3 (2011), 562–579 | MR

[6] Zadorin A. I., Zadorin N. A., “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zhurn. vychisl. matem. i mat. fiziki, 51:11 (2011), 1952–1962 | MR | Zbl

[7] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[8] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996 | MR

[9] Kellogg R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl

[10] Miln V. E., Chislennyi analiz, IL, M., 1951

[11] Nikolskii S. M., Kvadraturnye formuly, Nauka, M., 1974 | MR

[12] Dulan E., Miller D., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR