Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an implicit method of decomposition of hermit cubic splines using the new type multiwavelets with supercompact supports is investigated. The splitting algorithm of wavelet-transformations on the parallel solution of two three-diagonal systems of the linear equations with strict diagonal domination is reasonable. The results of numerical experiments are presented.
@article{SJVM_2013_16_3_a8,
     author = {B. M. Shumilov},
     title = {Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {287--301},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 287
EP  - 301
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
LA  - ru
ID  - SJVM_2013_16_3_a8
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 287-301
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
%G ru
%F SJVM_2013_16_3_a8
B. M. Shumilov. Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/

[1] Strela V., Multiwavelets: Theory and Applications, Thesis PHD in Mathematics, Cambridge, Massachusetts, 1996 | MR

[2] Heil C., Strang G., Strela V., “Approximation by translate of refinable functions”, Numer. Math., 73 (1996), 75–94 | DOI | MR | Zbl

[3] Warming R., Beam R., “Discrete multiresolution analysis using Hermite interpolation: Biorthogonal multiwavelets”, SIAM J. Sci. Comp., 22:1 (2000), 269–317 | MR

[4] Dahmen W., Han B., Jia R.-Q., Kunoth A., “Biorthogonal multiwavelets on the interval: cubic Hermite splines”, Constr. Approx., 16 (2000), 221–259 | DOI | MR | Zbl

[5] Han B., “Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets”, J. Approxim. Theory, 110 (2001), 18–53 | DOI | MR | Zbl

[6] Zhang Qin-li, Wu Bo-ying, He Chun-jiang, “Hermite multiwavelets”, Harbin gongue daxue xuebao. J. Harbin Inst. Technol., 36:6 (2004), 787–789 | MR | Zbl

[7] Jia R.-Q., Liu S.-T., “Wavelet bases of Hermite cubic splines on the interval”, Advances Computational Mathematics, 25 (2006), 23–39 | DOI | MR | Zbl

[8] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55

[9] Koro K., Ade K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl

[10] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[11] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[12] Arandiga F., Baeza A., Donat R., “Discrete multiresolution Based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl

[13] Shumilov B. M., “ ‘Lenivye’ veivlety ermitovykh kubicheskikh splainov i algoritm s rasschepleniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitelnaya tekhnika i informatika, 2011, no. 1, 64–72