Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an implicit method of decomposition of hermit cubic splines using the new type multiwavelets with supercompact supports is investigated. The splitting algorithm of wavelet-transformations on the parallel solution of two three-diagonal systems of the linear equations with strict diagonal domination is reasonable. The results of numerical experiments are presented.
@article{SJVM_2013_16_3_a8,
     author = {B. M. Shumilov},
     title = {Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {287--301},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 287
EP  - 301
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
LA  - ru
ID  - SJVM_2013_16_3_a8
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 287-301
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
%G ru
%F SJVM_2013_16_3_a8
B. M. Shumilov. Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/