Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_3_a8, author = {B. M. Shumilov}, title = {Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {287--301}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/} }
TY - JOUR AU - B. M. Shumilov TI - Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 287 EP - 301 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/ LA - ru ID - SJVM_2013_16_3_a8 ER -
B. M. Shumilov. Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
[1] Strela V., Multiwavelets: Theory and Applications, Thesis PHD in Mathematics, Cambridge, Massachusetts, 1996 | MR
[2] Heil C., Strang G., Strela V., “Approximation by translate of refinable functions”, Numer. Math., 73 (1996), 75–94 | DOI | MR | Zbl
[3] Warming R., Beam R., “Discrete multiresolution analysis using Hermite interpolation: Biorthogonal multiwavelets”, SIAM J. Sci. Comp., 22:1 (2000), 269–317 | MR
[4] Dahmen W., Han B., Jia R.-Q., Kunoth A., “Biorthogonal multiwavelets on the interval: cubic Hermite splines”, Constr. Approx., 16 (2000), 221–259 | DOI | MR | Zbl
[5] Han B., “Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets”, J. Approxim. Theory, 110 (2001), 18–53 | DOI | MR | Zbl
[6] Zhang Qin-li, Wu Bo-ying, He Chun-jiang, “Hermite multiwavelets”, Harbin gongue daxue xuebao. J. Harbin Inst. Technol., 36:6 (2004), 787–789 | MR | Zbl
[7] Jia R.-Q., Liu S.-T., “Wavelet bases of Hermite cubic splines on the interval”, Advances Computational Mathematics, 25 (2006), 23–39 | DOI | MR | Zbl
[8] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55
[9] Koro K., Ade K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl
[10] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[11] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002
[12] Arandiga F., Baeza A., Donat R., “Discrete multiresolution Based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl
[13] Shumilov B. M., “ ‘Lenivye’ veivlety ermitovykh kubicheskikh splainov i algoritm s rasschepleniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitelnaya tekhnika i informatika, 2011, no. 1, 64–72