Cubic multiwavelets orthogonal to polynomials and a splitting algorithm
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, an implicit method of decomposition of hermit cubic splines using the new type multiwavelets with supercompact supports is investigated. The splitting algorithm of wavelet-transformations on the parallel solution of two three-diagonal systems of the linear equations with strict diagonal domination is reasonable. The results of numerical experiments are presented.
@article{SJVM_2013_16_3_a8,
     author = {B. M. Shumilov},
     title = {Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {287--301},
     year = {2013},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - Cubic multiwavelets orthogonal to polynomials and a splitting algorithm
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 287
EP  - 301
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
LA  - ru
ID  - SJVM_2013_16_3_a8
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T Cubic multiwavelets orthogonal to polynomials and a splitting algorithm
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 287-301
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/
%G ru
%F SJVM_2013_16_3_a8
B. M. Shumilov. Cubic multiwavelets orthogonal to polynomials and a splitting algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/

[1] Strela V., Multiwavelets: Theory and Applications, Thesis PHD in Mathematics, Cambridge, Massachusetts, 1996 | MR

[2] Heil C., Strang G., Strela V., “Approximation by translate of refinable functions”, Numer. Math., 73 (1996), 75–94 | DOI | MR | Zbl

[3] Warming R., Beam R., “Discrete multiresolution analysis using Hermite interpolation: Biorthogonal multiwavelets”, SIAM J. Sci. Comp., 22:1 (2000), 269–317 | MR

[4] Dahmen W., Han B., Jia R.-Q., Kunoth A., “Biorthogonal multiwavelets on the interval: cubic Hermite splines”, Constr. Approx., 16 (2000), 221–259 | DOI | MR | Zbl

[5] Han B., “Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets”, J. Approxim. Theory, 110 (2001), 18–53 | DOI | MR | Zbl

[6] Zhang Qin-li, Wu Bo-ying, He Chun-jiang, “Hermite multiwavelets”, Harbin gongue daxue xuebao. J. Harbin Inst. Technol., 36:6 (2004), 787–789 | MR | Zbl

[7] Jia R.-Q., Liu S.-T., “Wavelet bases of Hermite cubic splines on the interval”, Advances Computational Mathematics, 25 (2006), 23–39 | DOI | MR | Zbl

[8] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55

[9] Koro K., Ade K., “Non-orthogonal spline wavelets for boundary element analysis”, Engineering Analysis with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl

[10] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[11] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[12] Arandiga F., Baeza A., Donat R., “Discrete multiresolution Based on hermite interpolation: computing derivatives”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 263–273 | DOI | MR | Zbl

[13] Shumilov B. M., “ ‘Lenivye’ veivlety ermitovykh kubicheskikh splainov i algoritm s rasschepleniem”, Vestnik Tomskogo gosudarstvennogo universiteta. Ser. Upravlenie, vychislitelnaya tekhnika i informatika, 2011, no. 1, 64–72