Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, an implicit method of decomposition of hermit cubic splines using the new type multiwavelets with supercompact supports is investigated. The splitting algorithm of wavelet-transformations on the parallel solution of two three-diagonal systems of the linear equations with strict diagonal domination is reasonable. The results of numerical experiments are presented.
@article{SJVM_2013_16_3_a8,
author = {B. M. Shumilov},
title = {Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {287--301},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/}
}
TY - JOUR AU - B. M. Shumilov TI - Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 287 EP - 301 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/ LA - ru ID - SJVM_2013_16_3_a8 ER -
B. M. Shumilov. Cubic multiwavelets orthogonal to polynomials and a~splitting algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 287-301. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a8/