Minimization of nonlinear functions with linear constraints
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 229-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, some aspects of numerical realization of algorithms from the software package for solving problems of minimization of nonlinear functions including non-smooth functions with allowance for the linear constraints set by sparse matrices are considered. Examples of the solution of test problems are presented.
@article{SJVM_2013_16_3_a3,
     author = {G. I. Zabinyako and E. A. Kotel'nikov},
     title = {Minimization of nonlinear functions with linear constraints},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a3/}
}
TY  - JOUR
AU  - G. I. Zabinyako
AU  - E. A. Kotel'nikov
TI  - Minimization of nonlinear functions with linear constraints
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 229
EP  - 242
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a3/
LA  - ru
ID  - SJVM_2013_16_3_a3
ER  - 
%0 Journal Article
%A G. I. Zabinyako
%A E. A. Kotel'nikov
%T Minimization of nonlinear functions with linear constraints
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 229-242
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a3/
%G ru
%F SJVM_2013_16_3_a3
G. I. Zabinyako; E. A. Kotel'nikov. Minimization of nonlinear functions with linear constraints. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 229-242. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a3/

[1] Murtaf B., Sovremennoe lineinoe programmirovanie. Teoriya i praktika, Mir, M., 1984 | MR

[2] Powell M. J. D., “Restart procedures for the conjugate gradient method”, Math. Programming, 12 (1977), 241–254 | DOI | MR | Zbl

[3] Zabinyako G. I., “Protsedury obnovleniya v metode sopryazhennykh gradientov”, Optimizatsiya, 46(63), 1989, 5–13 | MR | Zbl

[4] Gill P. E., Murray W., “Quasi-Newton methods for unconstrained optimization”, J. Inst. Maths. Appl., 9:1 (1972), 91–108 | DOI | MR | Zbl

[5] Shor N. Z., Stetsenko S. I., Kvadratichnye ekstremalnye zadachi i nedifferentsiruemaya optimizatsiya, Naukova dumka, Kiev, 1989

[6] Bartels R. H., Golub G. H., “The simplex method of linear programming using LU decomposition”, Communication of ACM, 12:5 (1969), 266–268 | DOI | Zbl

[7] Forrest J. J. H., Tomlin J. A., “Updating triangular factors of the basis to maintain sparsity in the product-form simplex method”, Math. Programming, 2:1 (1972), 263–278 | DOI | MR | Zbl

[8] Hellerman E., Rarick D. C., “The partitioned preassigned pivot procedure ($p^4$)”, Sparse Matrices and their Applications, eds. D. J. Rose, R. A. Willoughby, Plenum Press, N.Y., 1972, 68–76 | MR

[9] Olschowka M., Neumaier A., “A new pivoting strategy for Gaussian elimination”, Linear Algebra Appl., 240 (1996), 131–151 | DOI | MR

[10] Duff I. S., Koster J., “The design and use of algorithms for permuting large entries to the diagonal of sparse matrices”, SIAM J. Matrix Anal. Appl., 20:4 (1999), 889–901 | DOI | MR | Zbl

[11] Li X. S., Demmel J. W., “SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems”, ACM Trans. Math. Software, 29:2 (2003), 110–140 | DOI | MR | Zbl

[12] Schenk O., Gartner K., “Solving unsymmetric sparse systems of linear equation with PARDISO”, Future Generation Computer Systems, 20 (2004), 475–487 | DOI

[13] Zabinyako G. I., “Perepostroenie obratnykh matrits”, Sib. zhurn. industr. matem., 12:3 (2009), 41–51 | MR | Zbl

[14] Karypis G., Kumar V., “A fast and high quality multilevel scheme for partitioning irregular graphs”, SIAM J. on Sci. Computing, 20:1 (1998), 359–392 | DOI | MR

[15] Karypis G., Kumar V., METIS, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (Version 4.0), http://www.cs.umn.edu/

[16] http://www.netlib.org/lp/data

[17] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR