Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 185-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by order $k=1$ Raviart–Thomas mixed finite element spaces, and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order $h^2$. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.
@article{SJVM_2013_16_2_a7,
     author = {T. Hou},
     title = {Superconvergence and a~posteriori error estimates of {RT1} mixed methods for elliptic control problems with an integral constraint},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/}
}
TY  - JOUR
AU  - T. Hou
TI  - Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 185
EP  - 199
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/
LA  - ru
ID  - SJVM_2013_16_2_a7
ER  - 
%0 Journal Article
%A T. Hou
%T Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 185-199
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/
%G ru
%F SJVM_2013_16_2_a7
T. Hou. Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 185-199. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/

[1] Arada N., Casas E., Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comput. Optim. Appl., 23:2 (2002), 201–229 | DOI | MR | Zbl

[2] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[3] Chen Y., “Superconvergence of mixed finite element methods for optimal control problems”, Math. Comp., 77:263 (2008), 1269–1291 | DOI | MR | Zbl

[4] Chen Y., “Superconvergence of quadratic optimal control problems by triangular mixed finite elements”, Inter. J. Numer. Meths. Eng., 75:8 (2008), 881–898 | DOI | MR | Zbl

[5] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. Comp. Appl. Math., 211:1 (2008), 76–89 | DOI | MR | Zbl

[6] Chen Y., Huang Y., Liu W. B., Yan N., “Error estimates and superconvergence of mixed finite element methods for convex optimal control problems”, J. Sci. Comput., 42:3 (2009), 382–403 | DOI | MR

[7] Chen Y., Dai Y., “Superconvergence for optimal control problems governed by semi-linear elliptic equations”, J. Sci. Comput., 39 (2009), 206–221 | DOI | MR | Zbl

[8] Chen Y., Yi N., Liu W. B., “A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations”, SIAM J. Numer. Anal., 46:5 (2008), 2254–2275 | DOI | MR | Zbl

[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[10] Deng K., Chen Y., Lu Z., “Higher order triangular mixed finite element methods for semilinear quadratic optimal control problems”, Numer. Math. Theor. Meth. Appl., 4:2 (2011), 180–196 | MR | Zbl

[11] Douglas J., Roberts J. E., “Global estimates for mixed finite element methods for second order elliptic equations”, Math. Comp., 44 (1985), 39–52 | DOI | MR | Zbl

[12] Falk F. S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44:1 (1973), 28–47 | DOI | MR | Zbl

[13] Gunzburger M. D., Hou S. L., “Finite dimensional approximation of a class of constrained nonlinear control problems”, SIAM J. Control Optim., 34:3 (1996), 1001–1043 | DOI | MR | Zbl

[14] Geveci T., “On the approximation of the solution of an optimal control problem governed by an elliptic equation”, RAIRO. Anal. Numer., 13:4 (1979), 313–328 | MR | Zbl

[15] Hou L., Turner J. C., “Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls”, Numer. Math., 71:3 (1995), 289–315 | DOI | MR | Zbl

[16] Knowles G., “Finite element approximation of parabolic time optimal control problems”, SIAM J. Control Optim., 20:3 (1982), 414–427 | DOI | MR | Zbl

[17] Li R., Liu W., http://circus.math.pku.edu.cn/AFEPack

[18] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971 | MR | Zbl

[19] Ladyzhenskaya O. A., Uraltseva N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR | Zbl

[20] Lu Z., Chen Y., “$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations”, Numer. Anal. Appl., 12:1 (2009), 74–86 | MR

[21] Meyer C., Rösch A., “Superconvergence properties of optimal control problems”, SIAM J. Control Optim., 43:3 (2004), 970–985 | DOI | MR | Zbl

[22] Meyer C., Rösch A., “$L^\infty$-error estimates for approximated optimal control problems”, SIAM J. Control Optim., 44:5 (2005), 1636–1649 | DOI | MR

[23] Meider D., Vexler B., “A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints”, SIAM J. Control Optim., 47:3 (2008), 1150–1177 | DOI | MR

[24] Meider D., Vexler B., “A priori error estimates for space-sime finite element discretization of parabolic optimal control problems. Part II: problems with control constraints”, SIAM J. Control Optim., 47:3 (2008), 1301–1329 | DOI | MR

[25] McKinght R. S., Borsarge W. E. (jr.), “The Ritz–Galerkin procedure for parabolic control problems”, SIAM J. Control Optim., 11 (1973), 510–524 | DOI | MR

[26] Raviart P. A., Thomas J. M., A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of the finite element method, Lect. Notes Math., 606, Springer, Berlin–Heidelberg–New York, 1977 | MR