Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_2_a7, author = {T. Hou}, title = {Superconvergence and a~posteriori error estimates of {RT1} mixed methods for elliptic control problems with an integral constraint}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {185--199}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/} }
TY - JOUR AU - T. Hou TI - Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 185 EP - 199 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/ LA - ru ID - SJVM_2013_16_2_a7 ER -
%0 Journal Article %A T. Hou %T Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2013 %P 185-199 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/ %G ru %F SJVM_2013_16_2_a7
T. Hou. Superconvergence and a~posteriori error estimates of RT1 mixed methods for elliptic control problems with an integral constraint. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 185-199. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a7/
[1] Arada N., Casas E., Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comput. Optim. Appl., 23:2 (2002), 201–229 | DOI | MR | Zbl
[2] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[3] Chen Y., “Superconvergence of mixed finite element methods for optimal control problems”, Math. Comp., 77:263 (2008), 1269–1291 | DOI | MR | Zbl
[4] Chen Y., “Superconvergence of quadratic optimal control problems by triangular mixed finite elements”, Inter. J. Numer. Meths. Eng., 75:8 (2008), 881–898 | DOI | MR | Zbl
[5] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. Comp. Appl. Math., 211:1 (2008), 76–89 | DOI | MR | Zbl
[6] Chen Y., Huang Y., Liu W. B., Yan N., “Error estimates and superconvergence of mixed finite element methods for convex optimal control problems”, J. Sci. Comput., 42:3 (2009), 382–403 | DOI | MR
[7] Chen Y., Dai Y., “Superconvergence for optimal control problems governed by semi-linear elliptic equations”, J. Sci. Comput., 39 (2009), 206–221 | DOI | MR | Zbl
[8] Chen Y., Yi N., Liu W. B., “A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations”, SIAM J. Numer. Anal., 46:5 (2008), 2254–2275 | DOI | MR | Zbl
[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl
[10] Deng K., Chen Y., Lu Z., “Higher order triangular mixed finite element methods for semilinear quadratic optimal control problems”, Numer. Math. Theor. Meth. Appl., 4:2 (2011), 180–196 | MR | Zbl
[11] Douglas J., Roberts J. E., “Global estimates for mixed finite element methods for second order elliptic equations”, Math. Comp., 44 (1985), 39–52 | DOI | MR | Zbl
[12] Falk F. S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44:1 (1973), 28–47 | DOI | MR | Zbl
[13] Gunzburger M. D., Hou S. L., “Finite dimensional approximation of a class of constrained nonlinear control problems”, SIAM J. Control Optim., 34:3 (1996), 1001–1043 | DOI | MR | Zbl
[14] Geveci T., “On the approximation of the solution of an optimal control problem governed by an elliptic equation”, RAIRO. Anal. Numer., 13:4 (1979), 313–328 | MR | Zbl
[15] Hou L., Turner J. C., “Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls”, Numer. Math., 71:3 (1995), 289–315 | DOI | MR | Zbl
[16] Knowles G., “Finite element approximation of parabolic time optimal control problems”, SIAM J. Control Optim., 20:3 (1982), 414–427 | DOI | MR | Zbl
[17] Li R., Liu W., http://circus.math.pku.edu.cn/AFEPack
[18] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971 | MR | Zbl
[19] Ladyzhenskaya O. A., Uraltseva N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR | Zbl
[20] Lu Z., Chen Y., “$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations”, Numer. Anal. Appl., 12:1 (2009), 74–86 | MR
[21] Meyer C., Rösch A., “Superconvergence properties of optimal control problems”, SIAM J. Control Optim., 43:3 (2004), 970–985 | DOI | MR | Zbl
[22] Meyer C., Rösch A., “$L^\infty$-error estimates for approximated optimal control problems”, SIAM J. Control Optim., 44:5 (2005), 1636–1649 | DOI | MR
[23] Meider D., Vexler B., “A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints”, SIAM J. Control Optim., 47:3 (2008), 1150–1177 | DOI | MR
[24] Meider D., Vexler B., “A priori error estimates for space-sime finite element discretization of parabolic optimal control problems. Part II: problems with control constraints”, SIAM J. Control Optim., 47:3 (2008), 1301–1329 | DOI | MR
[25] McKinght R. S., Borsarge W. E. (jr.), “The Ritz–Galerkin procedure for parabolic control problems”, SIAM J. Control Optim., 11 (1973), 510–524 | DOI | MR
[26] Raviart P. A., Thomas J. M., A mixed finite element method for 2nd order elliptic problems. Mathematical aspects of the finite element method, Lect. Notes Math., 606, Springer, Berlin–Heidelberg–New York, 1977 | MR