Using Zernike moments for analysis of images
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 147-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for analyzing AFM images of the cell nuclei of higher organisms by expanding these images by Zernike moments is proposed. This method allows for expanding the pilot image by Zernike moments whose spatial harmonics are Zernike polynomials. It is shown that the reverse procedure of image reconstruction using Zernike polynomials converges to the experimental image and the expansion amplitude is a quantitative spectral characteristic when comparing the morphological features of different images. It is shown that expansion amplitudes can be used as input vectors for cluster analysis of images by PCA.
@article{SJVM_2013_16_2_a4,
     author = {L. A. Babkina and Yu. P. Garmai and D. V. Lebedev and R. A. Pantina and M. V. Filatov and V. V. Isaev-Ivanov},
     title = {Using {Zernike} moments for analysis of images},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {147--163},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a4/}
}
TY  - JOUR
AU  - L. A. Babkina
AU  - Yu. P. Garmai
AU  - D. V. Lebedev
AU  - R. A. Pantina
AU  - M. V. Filatov
AU  - V. V. Isaev-Ivanov
TI  - Using Zernike moments for analysis of images
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 147
EP  - 163
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a4/
LA  - ru
ID  - SJVM_2013_16_2_a4
ER  - 
%0 Journal Article
%A L. A. Babkina
%A Yu. P. Garmai
%A D. V. Lebedev
%A R. A. Pantina
%A M. V. Filatov
%A V. V. Isaev-Ivanov
%T Using Zernike moments for analysis of images
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 147-163
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a4/
%G ru
%F SJVM_2013_16_2_a4
L. A. Babkina; Yu. P. Garmai; D. V. Lebedev; R. A. Pantina; M. V. Filatov; V. V. Isaev-Ivanov. Using Zernike moments for analysis of images. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 147-163. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a4/

[1] Harvey Lodish, Arnold Berk, Lawrence Zipursky, Paul Matsudaira, David Baltimore, James Darnell, Molecular Cell Biology, 4th ed., W. H. Freeman Company, New York, 2000

[2] Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J., “X-ray structure of the nucleosome core particle at 2.8 Å resolution”, Nature, 389 (1997), 251–259 | DOI

[3] Robinson P. J. J., Fairall L., Huynh V. A. T., Rhodes D., “EM measurements define the dimensions of the “30-nm” chromatin fiber: Evidence for a compact, interdigitated structure”, PNAS, 103 (2006), 6506–6511 | DOI

[4] Zlatanova J., Leuba S. H., van Holde K., “Chromatin fiber structure: morphology, molecular determinants, structural transitions”, Biophys. J., 74:5 (1998), 2554–2566 | DOI

[5] Binnig G., Quatr C. F., Gerber Ch., “Atomic force microscope”, Phys. Rev. Lett., 56 (1986), 930–933 | DOI

[6] Pier Carlo Braga, Davide Ricci (eds.), Atomic force microscopy. Biomedical methods and application, Methods in molecular biology, 242, Humana Press, 2004

[7] Marszalek Piotr E., Li Hongbin, Oberhauser Andres F., Fernandez Julio M., “Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM”, PNAS, 99:7 (2002), 4278–4283 | DOI

[8] Galletto Roberto, Amitani Ichiro, Baskin Ronald J., Kowalczykowski Stephen C., “Direct observation of individual RecA filaments assembling on single DNA molecules”, Nature, 443 (2006), 875–878 | DOI

[9] Santos Nuno C., Castanho Miguel A. R. B., “An overview of the biophysical applications of atomic force microscopy”, Biophys. Chem., 107:8 (2004), 133–149 | DOI

[10] Hu M. K., “Visual pattern recognition by moment invariants”, IRE Trans. Inf. Theory, 8:2 (1962), 179–187 | DOI | Zbl

[11] Teague Michael Reed, “Image analysis via the general theory of moments”, J. Opt. Soc. Am., 70:8 (1980), 920–930 | DOI | MR

[12] Teh C. H., Chin R. T., “On image analysis by the methods of moments”, IEEE Trans Pattern Anal. Mach. Intell., 10:4 (1988), 496–513 | DOI | Zbl

[13] Lebedev D. V., Filatov M. V., Kuklin A. I., Islamov A. Kh., Kentzinger E., Pantina R., Toperverg B. P., Isaev-Ivanov V. V., “Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties”, FEBS Lett., 579:6, Feb. 28 (2005), 1465–1468 | DOI

[14] Chong Chee-Way, Raveendran P., Mukundan R., “An efficient algorithm for fast computation of pseudo-Zernike moments”, Int. Conf. on Image and Vision Computing, IVCNZ' 01, Dunedin, NewZealand, 2001, 237–242

[15] Khotanzad A., Hong Y. H., “Rotation invariant image recognition using features selected via a systematic methods”, Pattern recognition, 23:10 (1990), 1089–1101 | DOI

[16] Belcasim S. O., Shridhar M., Ahmadi M., “Pattern recognition with moment invariants: a comparative study and new results”, Pattern recognition, 24:12 (1991), 1117–1138 | DOI