Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_2_a3, author = {V. M. Aleksandrov}, title = {Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {133--145}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/} }
TY - JOUR AU - V. M. Aleksandrov TI - Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 133 EP - 145 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/ LA - ru ID - SJVM_2013_16_2_a3 ER -
%0 Journal Article %A V. M. Aleksandrov %T Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2013 %P 133-145 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/ %G ru %F SJVM_2013_16_2_a3
V. M. Aleksandrov. Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976
[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR
[3] Aleksandrov V. M., “Posledovatelnyi sintez optimalnogo upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 39:9 (1999), 1464–1478 | MR | Zbl
[4] Aleksandrov V. M., “Skhodimost metoda posledovatelnogo sinteza optimalnogo upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 39:10 (1999), 1650–1661 | MR | Zbl
[5] Nesh D., “Beskoalitsionnye igry”, Matrichnye igry, ed. N. N. Vorobev, Fizmatgiz, M., 1961, 205–221 | MR
[6] Belolipetskii A. A., “Chislennyi metod resheniya lineinoi zadachi optimalnogo upravleniya svedeniem ee k zadache Koshi”, Zhurn. vychisl. matem. i mat. fiziki, 17:6 (1977), 1380–1386 | MR | Zbl
[7] Kiselev Yu .N., “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl
[8] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl
[9] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie v rezhime realnogo vremeni”, Vtoraya mezhdunar. konf. po problemam upravleniya (17–19 iyunya 2003 g.), Plenarnye doklady, Izd-vo IPU im. V. A. Trapeznikova RAN, M., 2003, 20–47
[10] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl
[11] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000
[12] Hartl R. E., Sethi S. P., Vickson R. G., “A survey of the maximum principle for optimal control problems with state constraints”, SIAM Review, 37 (1995), 181–218 | DOI | MR | Zbl
[13] Aleksandrov V. M., “Iteratsionnyi metod vychisleniya v realnom vremeni optimalnogo po bystrodeistviyu upravleniya”, Cib. zhurn. vychisl. matematiki (Novosibirsk), 10:1 (2007), 1–28 | Zbl
[14] Aleksandrov V. M., “Postroenie approksimiruyuschei konstruktsii dlya vychisleniya i realizatsii optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Cib. zhurn. vychisl. matematiki (Novosibirsk), 15:1 (2012), 1–19