Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_2_a3, author = {V. M. Aleksandrov}, title = {Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {133--145}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/} }
TY - JOUR AU - V. M. Aleksandrov TI - Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 133 EP - 145 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/ LA - ru ID - SJVM_2013_16_2_a3 ER -
%0 Journal Article %A V. M. Aleksandrov %T Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2013 %P 133-145 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/ %G ru %F SJVM_2013_16_2_a3
V. M. Aleksandrov. Transferring a~system with unknown disturbance under optimal control to a~state of dynamic balance and to $\epsilon$-vicinity of a~final state. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a3/