Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_1_a7, author = {H. Saberi Najafi and S. A. Edalatpanah}, title = {Comparison analysis for improving preconditioned {SOR-type} iterative method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {71--80}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/} }
TY - JOUR AU - H. Saberi Najafi AU - S. A. Edalatpanah TI - Comparison analysis for improving preconditioned SOR-type iterative method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 71 EP - 80 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/ LA - ru ID - SJVM_2013_16_1_a7 ER -
%0 Journal Article %A H. Saberi Najafi %A S. A. Edalatpanah %T Comparison analysis for improving preconditioned SOR-type iterative method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2013 %P 71-80 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/ %G ru %F SJVM_2013_16_1_a7
H. Saberi Najafi; S. A. Edalatpanah. Comparison analysis for improving preconditioned SOR-type iterative method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/
[1] Hageman L. A., Young D. M., Applied Iterative Methods, Academic Press, New York, 1981 | MR | Zbl
[2] Varga R. S., Matrix Iterative Analysis, second ed., Springer, Berlin, 2000 | MR
[3] Saad Y., Iterative Methods for Sparse Linear System, PWS Publishing Company, a Division of International Thomson Publishing Inc., VSA, 1996 | MR | Zbl
[4] Saberi Najafi H., Ghazvini H., “Weighted restarting method in the weighted Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix”, Applied Mathematics and Computation, 175 (2006), 1279–1287 | MR
[5] Saberi Najafi H., Refahi A., “A new restarting method in Lanczos algorithm for generalized eigenvalue problem”, Applied Mathematics and Computation, 184 (2007), 421–428 | DOI | MR | Zbl
[6] Saberi Najafi H., Zareamoghaddam H., “A new computational GMRES method”, Applied Mathematics and Computation, 199 (2008), 527–534 | DOI | MR | Zbl
[7] Evans D. J., Preconditioned Iterative Methods, Gordon and Breach, 1994 | MR | Zbl
[8] Bruaset A. M., A survey of preconditioned iterative methods, Pitman Research Notes in Mathematics Series, 328, Longman Scientific and Technical, Harlow, 1995 | MR | Zbl
[9] Benzi M., “Preconditioning techniques for large linear systems: a survey”, J. of Computational Physics, 182 (2002), 418–477 | DOI | MR | Zbl
[10] Saberi Najafi H., Edalatpanah S. A., “Some improvements in PMAOR method for solving linear systems”, J. Info. Comp. Sci., 6:1 (2011), 15–22
[11] Milaszewic J. P., “Improving Jacobi and Gauss Seidel iterations”, Linear Algebra and its Applications, 93 (1987), 161–170 | DOI | MR | Zbl
[12] Dehghan M., Hajarian M., “Improving preconditioned SOR-type iterative methods for $L$-matrices”, International J. for Numerical Methods in Biomedical Engineering, 27 (2011), 774–784 | DOI | MR | Zbl
[13] Gunawardena A. D., Jain S. K., Snyder L., “Modified iterative methods for consistent linear systems”, Linear Algebra and its Application, 41 (1981), 99–110 | DOI
[14] Kohno T., Kotakemori H., Niki H., Usui M., “Improving the Gauss–Seidel method for $Z$-matrices”, Linear Algebra and its Application, 267 (1997), 113–123 | MR | Zbl
[15] Usui M., Niki H., Kohno T., “Adaptive Gauss–Seidel method for linear systems”, International J. of Computer Mathematics, 51 (1994), 119–125 | DOI | Zbl
[16] Karasozen B., Ozban A. Y., “Modified iterative methods for linear systems of equations”, International J. of Computer Mathematics, 770 (1996), 179–196 | MR
[17] Hadjidimos A., Noutsos D., Tzoumas M., “More on modifications and improvements of classical iterative schemes for $M$-matrices”, Linear Algebra and its Application, 364 (2003), 253–279 | DOI | MR | Zbl
[18] Li W., Sun W., “Modified Gauss–Seidel type methods and Jacobi type methods for $Z$-matrices”, Linear Algebra and its Applications, 317 (2000), 227–240 | DOI | MR | Zbl
[19] Li W., “Preconditioned AOR iterative methods for linear systems”, International J. of Computer Mathematics, 79 (2002), 89–101 | DOI | MR | Zbl
[20] Li Y., Wang Z., “A modified AOR iterative method for preconditioned linear systems”, Southeast Asian Bulletin of Mathematics, 28 (2004), 305–320 | MR | Zbl
[21] Wang L., Song Y., “Preconditioned AOR iterative methods for $M$-matrices”, J. of Computational and Applied Mathematics, 226 (2009), 114–124 | DOI | MR | Zbl
[22] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1994 | MR
[23] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 | MR | Zbl
[24] Climent J. J., Perea C., “Some comparison theorems for weak nonnegative splittings of bounded operators”, Linear Algebra and its Application, 275–276 (1998), 77–106 | DOI | MR | Zbl
[25] Li W., “On regular splittings $M$-matrices”, Linear Algebra and its Applications, 113 (1989), 159–172 | DOI | MR | Zbl