Comparison analysis for improving preconditioned SOR-type iterative method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 71-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, on the basis of nonnegative matrices, some preconditioners from class of $(I+S)$-type based on the SOR method have been studied. Moreover, we prove the monotonicity of spectral radiuses of iterative matrices with respect to the parameters in [12]. Also, some splittings and preconditioners are compared and derived by comparisons. A numerical example is also given to illustrate our results.
@article{SJVM_2013_16_1_a7,
     author = {H. Saberi Najafi and S. A. Edalatpanah},
     title = {Comparison analysis for improving preconditioned {SOR-type} iterative method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/}
}
TY  - JOUR
AU  - H. Saberi Najafi
AU  - S. A. Edalatpanah
TI  - Comparison analysis for improving preconditioned SOR-type iterative method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 71
EP  - 80
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/
LA  - ru
ID  - SJVM_2013_16_1_a7
ER  - 
%0 Journal Article
%A H. Saberi Najafi
%A S. A. Edalatpanah
%T Comparison analysis for improving preconditioned SOR-type iterative method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 71-80
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/
%G ru
%F SJVM_2013_16_1_a7
H. Saberi Najafi; S. A. Edalatpanah. Comparison analysis for improving preconditioned SOR-type iterative method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 71-80. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a7/

[1] Hageman L. A., Young D. M., Applied Iterative Methods, Academic Press, New York, 1981 | MR | Zbl

[2] Varga R. S., Matrix Iterative Analysis, second ed., Springer, Berlin, 2000 | MR

[3] Saad Y., Iterative Methods for Sparse Linear System, PWS Publishing Company, a Division of International Thomson Publishing Inc., VSA, 1996 | MR | Zbl

[4] Saberi Najafi H., Ghazvini H., “Weighted restarting method in the weighted Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix”, Applied Mathematics and Computation, 175 (2006), 1279–1287 | MR

[5] Saberi Najafi H., Refahi A., “A new restarting method in Lanczos algorithm for generalized eigenvalue problem”, Applied Mathematics and Computation, 184 (2007), 421–428 | DOI | MR | Zbl

[6] Saberi Najafi H., Zareamoghaddam H., “A new computational GMRES method”, Applied Mathematics and Computation, 199 (2008), 527–534 | DOI | MR | Zbl

[7] Evans D. J., Preconditioned Iterative Methods, Gordon and Breach, 1994 | MR | Zbl

[8] Bruaset A. M., A survey of preconditioned iterative methods, Pitman Research Notes in Mathematics Series, 328, Longman Scientific and Technical, Harlow, 1995 | MR | Zbl

[9] Benzi M., “Preconditioning techniques for large linear systems: a survey”, J. of Computational Physics, 182 (2002), 418–477 | DOI | MR | Zbl

[10] Saberi Najafi H., Edalatpanah S. A., “Some improvements in PMAOR method for solving linear systems”, J. Info. Comp. Sci., 6:1 (2011), 15–22

[11] Milaszewic J. P., “Improving Jacobi and Gauss Seidel iterations”, Linear Algebra and its Applications, 93 (1987), 161–170 | DOI | MR | Zbl

[12] Dehghan M., Hajarian M., “Improving preconditioned SOR-type iterative methods for $L$-matrices”, International J. for Numerical Methods in Biomedical Engineering, 27 (2011), 774–784 | DOI | MR | Zbl

[13] Gunawardena A. D., Jain S. K., Snyder L., “Modified iterative methods for consistent linear systems”, Linear Algebra and its Application, 41 (1981), 99–110 | DOI

[14] Kohno T., Kotakemori H., Niki H., Usui M., “Improving the Gauss–Seidel method for $Z$-matrices”, Linear Algebra and its Application, 267 (1997), 113–123 | MR | Zbl

[15] Usui M., Niki H., Kohno T., “Adaptive Gauss–Seidel method for linear systems”, International J. of Computer Mathematics, 51 (1994), 119–125 | DOI | Zbl

[16] Karasozen B., Ozban A. Y., “Modified iterative methods for linear systems of equations”, International J. of Computer Mathematics, 770 (1996), 179–196 | MR

[17] Hadjidimos A., Noutsos D., Tzoumas M., “More on modifications and improvements of classical iterative schemes for $M$-matrices”, Linear Algebra and its Application, 364 (2003), 253–279 | DOI | MR | Zbl

[18] Li W., Sun W., “Modified Gauss–Seidel type methods and Jacobi type methods for $Z$-matrices”, Linear Algebra and its Applications, 317 (2000), 227–240 | DOI | MR | Zbl

[19] Li W., “Preconditioned AOR iterative methods for linear systems”, International J. of Computer Mathematics, 79 (2002), 89–101 | DOI | MR | Zbl

[20] Li Y., Wang Z., “A modified AOR iterative method for preconditioned linear systems”, Southeast Asian Bulletin of Mathematics, 28 (2004), 305–320 | MR | Zbl

[21] Wang L., Song Y., “Preconditioned AOR iterative methods for $M$-matrices”, J. of Computational and Applied Mathematics, 226 (2009), 114–124 | DOI | MR | Zbl

[22] Berman A., Plemmons R. J., Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1994 | MR

[23] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York–London, 1970 | MR | Zbl

[24] Climent J. J., Perea C., “Some comparison theorems for weak nonnegative splittings of bounded operators”, Linear Algebra and its Application, 275–276 (1998), 77–106 | DOI | MR | Zbl

[25] Li W., “On regular splittings $M$-matrices”, Linear Algebra and its Applications, 113 (1989), 159–172 | DOI | MR | Zbl