Theoretical justification of interior point algorithms for solving optimization problems with nonlinear constraints
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 27-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of interior point algorithms is considered. These algorithms can be used for solving mathematical programming problems with nonlinear inequality constraints. The weighted Euclidean rates are applied to find a descent direction for improving a solution. These rates are varying in iterations. Theoretical justification of the algorithms with some assumptions (such as non-degeneracy of a problem) is presented.
@article{SJVM_2013_16_1_a2,
     author = {V. I. Zorkaltsev and S. M. Perzhabinsky},
     title = {Theoretical justification of interior point algorithms for solving optimization problems with nonlinear constraints},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a2/}
}
TY  - JOUR
AU  - V. I. Zorkaltsev
AU  - S. M. Perzhabinsky
TI  - Theoretical justification of interior point algorithms for solving optimization problems with nonlinear constraints
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 27
EP  - 38
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a2/
LA  - ru
ID  - SJVM_2013_16_1_a2
ER  - 
%0 Journal Article
%A V. I. Zorkaltsev
%A S. M. Perzhabinsky
%T Theoretical justification of interior point algorithms for solving optimization problems with nonlinear constraints
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 27-38
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a2/
%G ru
%F SJVM_2013_16_1_a2
V. I. Zorkaltsev; S. M. Perzhabinsky. Theoretical justification of interior point algorithms for solving optimization problems with nonlinear constraints. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 27-38. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a2/

[1] Dikin I. I., “Iterativnoe reshenie zadach lineinogo i kvadratichnogo programmirovaniya”, Dokl. AN SSSR, 174 (1967), 747–748 | MR | Zbl

[2] Dikin I. I., Zorkaltsev V. I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya (algoritmy metoda vnutrennikh tochek), Nauka, Novosibirsk, 1980 | MR | Zbl

[3] Evtushenko Yu. G., Zhadan V. G., “Chislennye metody resheniya nekotorykh zadach issledovaniya operatsii”, Zhurn. vychisl. matem. i mat. fiziki, 13:3 (1973), 583–598 | MR | Zbl

[4] Evtushenko Yu. G., Zhadan V. G., “Barerno-proektivnye metody resheniya zadach nelineinogo programmirovaniya”, Zhurn. vychisl. matem. i mat. fiziki, 34:5 (1994), 669–684 | MR | Zbl

[5] Zorkaltsev V. I., Otnositelno vnutrennyaya tochka optimalnykh reshenii, Izd-vo Komi filiala AN SSSR, Syktyvkar, 1984

[6] Zorkaltsev V. I., Metod otnositelno vnutrennikh tochek, Izd-vo Komi filiala AN SSSR, Syktyvkar, 1986

[7] Zangvill U. I., Nelineinoe programmirovanie, Sovetskoe radio, M., 1973

[8] Perzhabinskii S. M., “Algoritm vnutrennikh tochek, ispolzuyuschii kvadratichnye approksimatsii”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie (Irkutsk), 18:3 (2008), 97–101