Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for a second order nonlinear singular perturbation ordinary differential equation is considered. We propose the method based on the Newton and the Picard linearizations using known modified Samarskii scheme on the Shishkin mesh in the case of a linear problem. It is proved that the constructed difference schemes are of second order and uniformly convergent. To decrease the number of the arithmetical operations, we propose a two-grid method. The results of some numerical experiments are discussed.
@article{SJVM_2013_16_1_a1,
     author = {A. I. Zadorin and S. V. Tikhovskaya},
     title = {Solution of second order nonlinear singular perturbation ordinary differential equation based on the {Samarskii} scheme},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - S. V. Tikhovskaya
TI  - Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 11
EP  - 25
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/
LA  - ru
ID  - SJVM_2013_16_1_a1
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A S. V. Tikhovskaya
%T Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 11-25
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/
%G ru
%F SJVM_2013_16_1_a1
A. I. Zadorin; S. V. Tikhovskaya. Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/

[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248 | MR | Zbl

[2] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992

[4] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust Computational Techniques for Boundary Layers, Chapman and Hall, CRC Press, Boca Raton, FL, 2000 | MR | Zbl

[5] Bagaev B. M., Karepova E. D., Shaidurov V. V., Setochnye metody resheniya zadach s pogranichnym sloem, Ch. 2, Nauka, Novosibirsk, 2001 | MR | Zbl

[6] Shishkin G. I., “Metod povyshennoi tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 9:1 (2006), 81–108 | Zbl

[7] Roos H.-G., Stynes M., Tobiska L., Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | MR | Zbl

[8] Andreev V. B., Savin I. A., “O ravnomernoi po malomu parametru skhodimosti monotonnoi skhemy A. A. Samarskogo i ee modifikatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 35:5 (1995), 739–752 | MR | Zbl

[9] Vulanovic R., “A uniform numerical method for quasilinear singular perturbation problems without turning points”, Computing, 41 (1989), 97–106 | DOI | MR | Zbl

[10] Vulkov L. G., Zadorin A. I., “Two-grid algorithms for an ordinary second order equation with exponential boundary layer in the solution”, Int. J. of Numerical Analysis and Modeling, 7:3 (2010), 580–592 | MR | Zbl

[11] Zadorin A. I., “Metod interpolyatsii na sguschayuscheisya setke dlya funktsii s pogransloinoi sostavlyayuschei”, Zhurn. vychisl. matematiki i mat. fiziki, 48:9 (2008), 1673–1684 | MR