Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 11-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for a second order nonlinear singular perturbation ordinary differential equation is considered. We propose the method based on the Newton and the Picard linearizations using known modified Samarskii scheme on the Shishkin mesh in the case of a linear problem. It is proved that the constructed difference schemes are of second order and uniformly convergent. To decrease the number of the arithmetical operations, we propose a two-grid method. The results of some numerical experiments are discussed.
@article{SJVM_2013_16_1_a1,
     author = {A. I. Zadorin and S. V. Tikhovskaya},
     title = {Solution of second order nonlinear singular perturbation ordinary differential equation based on the {Samarskii} scheme},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {11--25},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - S. V. Tikhovskaya
TI  - Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 11
EP  - 25
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/
LA  - ru
ID  - SJVM_2013_16_1_a1
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A S. V. Tikhovskaya
%T Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 11-25
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/
%G ru
%F SJVM_2013_16_1_a1
A. I. Zadorin; S. V. Tikhovskaya. Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/