Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_1_a1, author = {A. I. Zadorin and S. V. Tikhovskaya}, title = {Solution of second order nonlinear singular perturbation ordinary differential equation based on the {Samarskii} scheme}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {11--25}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/} }
TY - JOUR AU - A. I. Zadorin AU - S. V. Tikhovskaya TI - Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 11 EP - 25 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/ LA - ru ID - SJVM_2013_16_1_a1 ER -
%0 Journal Article %A A. I. Zadorin %A S. V. Tikhovskaya %T Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2013 %P 11-25 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/ %G ru %F SJVM_2013_16_1_a1
A. I. Zadorin; S. V. Tikhovskaya. Solution of second order nonlinear singular perturbation ordinary differential equation based on the Samarskii scheme. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 11-25. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a1/
[1] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248 | MR | Zbl
[2] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 841–859 | MR | Zbl
[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992
[4] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust Computational Techniques for Boundary Layers, Chapman and Hall, CRC Press, Boca Raton, FL, 2000 | MR | Zbl
[5] Bagaev B. M., Karepova E. D., Shaidurov V. V., Setochnye metody resheniya zadach s pogranichnym sloem, Ch. 2, Nauka, Novosibirsk, 2001 | MR | Zbl
[6] Shishkin G. I., “Metod povyshennoi tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya konvektsii-diffuzii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 9:1 (2006), 81–108 | Zbl
[7] Roos H.-G., Stynes M., Tobiska L., Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | MR | Zbl
[8] Andreev V. B., Savin I. A., “O ravnomernoi po malomu parametru skhodimosti monotonnoi skhemy A. A. Samarskogo i ee modifikatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 35:5 (1995), 739–752 | MR | Zbl
[9] Vulanovic R., “A uniform numerical method for quasilinear singular perturbation problems without turning points”, Computing, 41 (1989), 97–106 | DOI | MR | Zbl
[10] Vulkov L. G., Zadorin A. I., “Two-grid algorithms for an ordinary second order equation with exponential boundary layer in the solution”, Int. J. of Numerical Analysis and Modeling, 7:3 (2010), 580–592 | MR | Zbl
[11] Zadorin A. I., “Metod interpolyatsii na sguschayuscheisya setke dlya funktsii s pogransloinoi sostavlyayuschei”, Zhurn. vychisl. matematiki i mat. fiziki, 48:9 (2008), 1673–1684 | MR