Theorem of training for a~competition algorithm
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is an extension of [1], where a new decision algorithm was proposed. In its operation, the unit resembles artificial neural networks. However the functioning of the algorithm proposed is based on the different concepts. It does not use the concept of a net, a neuron. The theorem of training for the new competition algorithm is proved.
@article{SJVM_2013_16_1_a0,
     author = {V. S. Antyufeev},
     title = {Theorem of training for a~competition algorithm},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a0/}
}
TY  - JOUR
AU  - V. S. Antyufeev
TI  - Theorem of training for a~competition algorithm
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 1
EP  - 9
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a0/
LA  - ru
ID  - SJVM_2013_16_1_a0
ER  - 
%0 Journal Article
%A V. S. Antyufeev
%T Theorem of training for a~competition algorithm
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 1-9
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a0/
%G ru
%F SJVM_2013_16_1_a0
V. S. Antyufeev. Theorem of training for a~competition algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a0/

[1] Antyufeev V. S., “Resheniya zadach raspoznavaniya metodom Monte-Karlo”, RJNAMM, 27:2 (2012), 113–130 | MR | Zbl

[2] Barskii A. B., Neironnye seti: raspoznavanie, upravlenie, prinyatie reshenii, Finansy i statistika, M., 2004

[3] Osovskii S., Neironnye seti dlya obrabotki informatsii, Finansy i statistika, M., 2004

[4] Sejnowski T. J., Rosenberg C. R., “Parallel networks that learn to pronounce English text”, Complex Systems, 1:1 (1987), 145–168 | Zbl

[5] Burr D. J., “Experiments with a connectionist text reader”, Proc. of the First International on Neural Networks, v. 4, eds. Caudill M., Butler C., SOS, San Diego, CA, 1987, 717–724

[6] Cottrell G. W., Munro P., Zipser D., “Learning internal representation from gray-scale images: An example of extensional programming”, Proc. of the 9-th Annual cognitive sci. soc. conf. (Seatle, USA, July 16–18 1987), v. 3, Ablex, Norwood, NJ, 1987, 461–473

[7] Uossermen F., Neirokompyuternaya tekhnika: Teoriya i praktika, Mir, M., 1992

[8] Rozenblatt F., Printsipy neirodinamiki, Mir, M., 1965

[9] Minskii M. L., Peipert S., Perseptrony, Mir, M., 1971

[10] Grossberg S., Studies of Mind and Brain, Reidel, Boston, 1982 | MR | Zbl

[11] McCulloch V. S., Pitts W. H., “A logical calculus of ideas immanent in nervous activity”, Bull. Math. Biophysics, 2 (1943), 548–558 | MR

[12] Kofman A., Vvedenie v teoriyu nechetkikh mnozhestv, Radio i svyaz, M., 1982 | MR

[13] Orlovskii S. A., Problemy prinyatiya reshenii pri nechetkoi iskhodnoi informatsii, Nauka, M., 1981 | MR

[14] Averkin A. N., Nechetkie mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta, ed. D. A. Pospelov, Nauka, M., 1986 | Zbl

[15] Rutkovskaya D., Pilinskii M., Rutkovskii L., Neironnye seti, geneticheskie algoritmy i nechetkie sistemy, Goryachaya liniya-Telekom, M., 2004

[16] Kuratovskii A., Topologiya, v. I, Mir, M., 1966

[17] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Nauka, M., 1969

[18] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[19] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1984 | Zbl