Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_4_a7, author = {T. Hou}, title = {Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {425--440}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/} }
TY - JOUR AU - T. Hou TI - Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 425 EP - 440 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/ LA - ru ID - SJVM_2012_15_4_a7 ER -
%0 Journal Article %A T. Hou %T Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 425-440 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/ %G ru %F SJVM_2012_15_4_a7
T. Hou. Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 4, pp. 425-440. http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/
[1] Alt W., Machenroth U., “Convergence of finite element approximations to state constrained convex parabolic boundary control problems”, SIAM J. Control Optim., 27 (1989), 718–736 | DOI | MR | Zbl
[2] Arada N., Casas E., Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comp. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl
[3] Babuska I., Strouboulis T., The Finite Element Method and its Reliability, University press, Oxford, 2001 | MR
[4] Becker R., Kapp H., Rancher R., “Adaptive finite element methods for optimal control of partial differential equations: Basic concept”, SIAM J. Control Optim., 39 (2000), 113–132 | DOI | MR | Zbl
[5] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[6] Brunner H., Yan N., “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Numer. Math., 101 (2005), 1–27 | DOI | MR | Zbl
[7] Chen Y., “Superconvergence of quadratic optimal control problems by triangular mixed finite elements”, Inter. J. Numer. Methods Eng., 75 (2008), 881–898 | DOI | MR | Zbl
[8] Chen Y., Huang Y., Liu W. B., Yan N. N., “Error estimates and superconvergence of mixed finite element methods for convex optimal control problems”, J. Sci. Comput., 42 (2009), 382–403 | DOI | MR
[9] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. Comp. Appl. Math., 211 (2008), 76–89 | DOI | MR | Zbl
[10] Douglas J., Roberts J. E., “Global estimates for mixed finite element methods for second order elliptic equations”, Math. Comp., 44 (1985), 39–52 | DOI | MR | Zbl
[11] Ewing R. E., Liu M. M., Wang J., “Superconvergence of mixed finite element approximations over quadrilaterals”, SIAM J. Numer. Anal., 36 (1999), 772–787 | DOI | MR
[12] Garcia S. M. F., “Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuous-time case”, Numer. Methods Partial Differential Eq., 10 (1994), 129–147 | DOI | MR | Zbl
[13] Gong W., Yan N., “A posteriori error estimate for boundary control problems governed by the parabolic partial differential equations”, J. Comput. Math., 27 (2009), 68–88 | MR | Zbl
[14] Hou L., Turner J. C., “Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls”, Numer. Math., 71 (1995), 289–315 | DOI | MR | Zbl
[15] Haslinger J., Neittaanmaki P., Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1989 | MR
[16] Knowles G., “Finite element approximation of parabolic time optimal control problems”, SIAM J. Control Optim., 20 (1982), 414–427 | DOI | MR | Zbl
[17] Lions J., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971 | MR | Zbl
[18] Lions J., Magenes E., Non Homogeneous Boundary Value Problems and Applications, Springer-Verlag, 1972
[19] Liu W., Ma H., Tang T., Yan N., “A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations”, SIAM J. Numer. Anal., 42 (2004), 1032–1061 | DOI | MR | Zbl
[20] Liu W., Yan N., “A posteriori error estimates for convex boundary control problems”, SIAM J. Numer. Anal., 39 (2001), 73–99 | DOI | MR | Zbl
[21] Liu W., Yan N., “A posteriori error estimates for optimal control problems governed by Stokes equations”, SIAM J. Numer. Anal., 40 (2003), 1850–1869 | DOI | MR
[22] Li R., Liu W., Ma H., Tang T., “Adaptive finite element approximation of elliptic control problems”, SIAM J. Control Optim., 41 (2002), 1321–1349 | DOI | MR | Zbl
[23] Mcknight R., Bosarge W. (Jr.), “The Ritz–Galerkin procedure for parabolic control problems”, SIAM J. Control Optim., 11 (1973), 510–524 | DOI | MR | Zbl
[24] Neittaanmaki P., Tiba D., Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications, M. Dekker, New York, 1994 | MR