Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 4, pp. 425-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate $L^\infty(L_2)$-error estimates and superconvergence of semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by order $k$ Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order $k$ ($k\ge0$). We derive error estimates for both the state and the control approximation. Moreover, we present superconvergence analysis for mixed finite element approximation of the optimal control problems.
@article{SJVM_2012_15_4_a7,
     author = {T. Hou},
     title = {Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {425--440},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/}
}
TY  - JOUR
AU  - T. Hou
TI  - Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 425
EP  - 440
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/
LA  - ru
ID  - SJVM_2012_15_4_a7
ER  - 
%0 Journal Article
%A T. Hou
%T Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 425-440
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/
%G ru
%F SJVM_2012_15_4_a7
T. Hou. Error estimates and superconvergence of semidiscrete mixed methods for optimal control problems governed by hyperbolic equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 4, pp. 425-440. http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a7/

[1] Alt W., Machenroth U., “Convergence of finite element approximations to state constrained convex parabolic boundary control problems”, SIAM J. Control Optim., 27 (1989), 718–736 | DOI | MR | Zbl

[2] Arada N., Casas E., Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comp. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl

[3] Babuska I., Strouboulis T., The Finite Element Method and its Reliability, University press, Oxford, 2001 | MR

[4] Becker R., Kapp H., Rancher R., “Adaptive finite element methods for optimal control of partial differential equations: Basic concept”, SIAM J. Control Optim., 39 (2000), 113–132 | DOI | MR | Zbl

[5] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl

[6] Brunner H., Yan N., “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Numer. Math., 101 (2005), 1–27 | DOI | MR | Zbl

[7] Chen Y., “Superconvergence of quadratic optimal control problems by triangular mixed finite elements”, Inter. J. Numer. Methods Eng., 75 (2008), 881–898 | DOI | MR | Zbl

[8] Chen Y., Huang Y., Liu W. B., Yan N. N., “Error estimates and superconvergence of mixed finite element methods for convex optimal control problems”, J. Sci. Comput., 42 (2009), 382–403 | DOI | MR

[9] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. Comp. Appl. Math., 211 (2008), 76–89 | DOI | MR | Zbl

[10] Douglas J., Roberts J. E., “Global estimates for mixed finite element methods for second order elliptic equations”, Math. Comp., 44 (1985), 39–52 | DOI | MR | Zbl

[11] Ewing R. E., Liu M. M., Wang J., “Superconvergence of mixed finite element approximations over quadrilaterals”, SIAM J. Numer. Anal., 36 (1999), 772–787 | DOI | MR

[12] Garcia S. M. F., “Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuous-time case”, Numer. Methods Partial Differential Eq., 10 (1994), 129–147 | DOI | MR | Zbl

[13] Gong W., Yan N., “A posteriori error estimate for boundary control problems governed by the parabolic partial differential equations”, J. Comput. Math., 27 (2009), 68–88 | MR | Zbl

[14] Hou L., Turner J. C., “Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls”, Numer. Math., 71 (1995), 289–315 | DOI | MR | Zbl

[15] Haslinger J., Neittaanmaki P., Finite Element Approximation for Optimal Shape Design, John Wiley and Sons, Chichester, UK, 1989 | MR

[16] Knowles G., “Finite element approximation of parabolic time optimal control problems”, SIAM J. Control Optim., 20 (1982), 414–427 | DOI | MR | Zbl

[17] Lions J., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971 | MR | Zbl

[18] Lions J., Magenes E., Non Homogeneous Boundary Value Problems and Applications, Springer-Verlag, 1972

[19] Liu W., Ma H., Tang T., Yan N., “A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations”, SIAM J. Numer. Anal., 42 (2004), 1032–1061 | DOI | MR | Zbl

[20] Liu W., Yan N., “A posteriori error estimates for convex boundary control problems”, SIAM J. Numer. Anal., 39 (2001), 73–99 | DOI | MR | Zbl

[21] Liu W., Yan N., “A posteriori error estimates for optimal control problems governed by Stokes equations”, SIAM J. Numer. Anal., 40 (2003), 1850–1869 | DOI | MR

[22] Li R., Liu W., Ma H., Tang T., “Adaptive finite element approximation of elliptic control problems”, SIAM J. Control Optim., 41 (2002), 1321–1349 | DOI | MR | Zbl

[23] Mcknight R., Bosarge W. (Jr.), “The Ritz–Galerkin procedure for parabolic control problems”, SIAM J. Control Optim., 11 (1973), 510–524 | DOI | MR | Zbl

[24] Neittaanmaki P., Tiba D., Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications, M. Dekker, New York, 1994 | MR