Lower bounds for eigenvalues and postprocessing by an integral type nonconforming FEM
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 235-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we analyze some approximation properties of a nonconforming piecewise linear finite element with integral degrees of freedom. A nonconforming finite element method (FEM) is applied to second-order eigenvalue problems (EVPs). We prove that the eigenvalues computed by means of this element are smaller than the exact ones if the mesh size is small enough. The case when an EVP is defined on a nonconvex domain is considered. A superconvergent rate is established to a second-order elliptic problem by the introduction of nonstandard interpolated elements based on the integral type linear element. A simple postprocessing method applied to second-order EVPs is also proposed and analyzed. Finally, computational aspects are discussed and numerical examples are presented.
@article{SJVM_2012_15_3_a0,
     author = {A. B. Andreev and M. R. Racheva},
     title = {Lower bounds for eigenvalues and postprocessing by an integral type nonconforming {FEM}},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {235--249},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a0/}
}
TY  - JOUR
AU  - A. B. Andreev
AU  - M. R. Racheva
TI  - Lower bounds for eigenvalues and postprocessing by an integral type nonconforming FEM
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 235
EP  - 249
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a0/
LA  - ru
ID  - SJVM_2012_15_3_a0
ER  - 
%0 Journal Article
%A A. B. Andreev
%A M. R. Racheva
%T Lower bounds for eigenvalues and postprocessing by an integral type nonconforming FEM
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 235-249
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a0/
%G ru
%F SJVM_2012_15_3_a0
A. B. Andreev; M. R. Racheva. Lower bounds for eigenvalues and postprocessing by an integral type nonconforming FEM. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 235-249. http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a0/

[1] Acosta R., Duran P. G., “The maximum angle condition for mixed and non conforming elements: Application to the Stokes equations”, SIAM J. Numer. Anal., 37 (2000), 18–36 | DOI | MR

[2] Andreev A. B., “Supercloseness between the elliptic projection and the approximate eigenfunction and its application to a postprocessing of finite element eigenvalues problems”, NAA–2004, LNCS, 3401, Springer-Verlag, 2005, 100–107 | Zbl

[3] Andreev A. B., Lazarov R. D., Racheva M. R., “Postprocessing and higher order convergence of the mixed finite element approximations of bi-harmonic eigenvalue problems”, J. Comput. Appl. Math., 182 (2005), 333–349 | DOI | MR | Zbl

[4] Andreev A. B., Racheva M. R., “On the postprocessing technique for eigenvalue problems”, NMA–2002, LNCS, 2542, eds. I. T. Dimov, et al., Springer, Heidelberg, 2003, 363–371 | MR | Zbl

[5] Andreev A. B., Racheva M. R., “Superconvergence of the interpolated quadratic finite elements on triangular meshes”, Mathematica Balkanica. New Series, 19:3–4 (2005), 385–404 | MR | Zbl

[6] Andreev A., Racheva M., “A Zienkiewicz-type finite element applied to fourth-order problems”, J. Comput. Appl. Math., 235:2 (2010), 348–357 | DOI | MR | Zbl

[7] Armentano M. G., Duran R. G., “Asymptotic lower bounds for eigenvalues by nonconforming finite element methods”, Electron. Trans. Numer. Anal., 17 (2004), 92–101 | MR

[8] Babuska I., Osborn J., “Eigenvalue problems”, Handbook of Numerical Analysis, v. II, eds. P. G. Ciarlet, J. L. Lions, North-Holland, Amsterdam, 1991, 641–787 | DOI | MR | Zbl

[9] Brenner S., Scott L. R., The Mathematical Theory for Finite Element Methods, Springer-Verlag, New York, 1992

[10] Carstensen C., Bartels S., Jansche S., “A posteriori error estimates for nonconforming finite element methods”, Numer. Math., 92:2 (2002), 233–256 | DOI | MR | Zbl

[11] Ciarlet P. G., “Basic error estimates for elliptic problems”, Finite Element Methods, Part 1, eds. P. G. Ciarlet, J. L. Lions, North-Holland, Amsterdam, 1991, 17–351 | MR | Zbl

[12] Duran P. G., Gastaldi L., Padra C., “A posteriori error estimators for mixed pproximations of eigenvalue problems”, Math. Mod. Methods Appl. Sci., 9 (1999), 1165–1178 | DOI | MR | Zbl

[13] Grisvard P., Elliptic Problems in Nonsmooth Domain, Pitman, Boston, 1985 | MR | Zbl

[14] Li B., Zhang Z., “Analysis of a class of superconvergence patch-recovery techniques for linear and bilinear finite elements”, Numer. Methods for PDEs, 15 (1999), 151–167 | MR | Zbl

[15] Lin Q., Yan N., Zhou A., “A rectangle test for interpolated finite elements”, Proc. of Systems Science Systems Engineering, Culture Publish Co., 1991, 217–229

[16] Racheva M. R., Andreev A. B., “Superconvergence postprocessing for eigenvalues”, Comp. Methods in Appl. Math., 2:2 (2002), 171–185 | MR | Zbl

[17] Zienkiewicz O. C., Zhu J. Z., “The superconvergence patch-recovery and a-posteriori error estimates. Part 1: The recovery technique”, Int. J. Numer. Methods Eng., 33 (1992), 1331–1364 | DOI | MR | Zbl