Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 165-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, elastic wave propagation in a homogeneous isotropic elastic medium with a rigid boundary is considered. A method based on the decoupling of pressure and shear waves via the use of scalar potentials is proposed. This method is adapted to a finite element discretization, which is discussed. A stable, energy preserving numerical scheme is presented, as well as 2D numerical results.
@article{SJVM_2012_15_2_a5,
     author = {A. Burel and S. Imp\'eriale and P. Joly},
     title = {Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. {The} case of the rigid boundary condition},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/}
}
TY  - JOUR
AU  - A. Burel
AU  - S. Impériale
AU  - P. Joly
TI  - Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 165
EP  - 174
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/
LA  - ru
ID  - SJVM_2012_15_2_a5
ER  - 
%0 Journal Article
%A A. Burel
%A S. Impériale
%A P. Joly
%T Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 165-174
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/
%G ru
%F SJVM_2012_15_2_a5
A. Burel; S. Impériale; P. Joly. Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 165-174. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/

[1] Achenbach J. D., Wave Propagation in Elastic Solids, American Elsevier, Amsterdam–New York, 1975

[2] Cohen G., Higher-order Numerical Methods for Transient Wave Equations, Springer-Verlag, Berlin, 2001 | MR

[3] Diaz J., Joly P., “Robust high order non-conforming finite element formulation for time domain fluid-structure interaction”, J. of Computational Acoustics. An IMACS Journal, 13:3 (2005), 403–431 | MR | Zbl

[4] Joly P., Ainsworth M., Davies P., Duncan D., Martin P., Rynne B., “Variational methods for time dependant wave propagation problems”, Topics in computational wave propagation: Direct and Inverse Problems. Computational Methods in Wave Propagation, Springer Verlag, Berlin, 2003, 201–264 | MR | Zbl

[5] Joly P., Finite Element Methods with Continuous Displacement, Chapman Hall/CRC, Boca Raton, FL, 2008, 267–329 | MR | Zbl

[6] Monk P., Finite Element Methods for Maxwell's Equations, Oxford science publications, Oxford, 2003 | Zbl