@article{SJVM_2012_15_2_a5,
author = {A. Burel and S. Imp\'eriale and P. Joly},
title = {Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. {The} case of the rigid boundary condition},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {165--174},
year = {2012},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/}
}
TY - JOUR AU - A. Burel AU - S. Impériale AU - P. Joly TI - Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 165 EP - 174 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/ LA - ru ID - SJVM_2012_15_2_a5 ER -
%0 Journal Article %A A. Burel %A S. Impériale %A P. Joly %T Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 165-174 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/ %G ru %F SJVM_2012_15_2_a5
A. Burel; S. Impériale; P. Joly. Solving the homogeneous isotropic linear elastodynamics equations using potentials and finite elements. The case of the rigid boundary condition. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 165-174. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a5/
[1] Achenbach J. D., Wave Propagation in Elastic Solids, American Elsevier, Amsterdam–New York, 1975
[2] Cohen G., Higher-order Numerical Methods for Transient Wave Equations, Springer-Verlag, Berlin, 2001 | MR
[3] Diaz J., Joly P., “Robust high order non-conforming finite element formulation for time domain fluid-structure interaction”, J. of Computational Acoustics. An IMACS Journal, 13:3 (2005), 403–431 | MR | Zbl
[4] Joly P., Ainsworth M., Davies P., Duncan D., Martin P., Rynne B., “Variational methods for time dependant wave propagation problems”, Topics in computational wave propagation: Direct and Inverse Problems. Computational Methods in Wave Propagation, Springer Verlag, Berlin, 2003, 201–264 | MR | Zbl
[5] Joly P., Finite Element Methods with Continuous Displacement, Chapman Hall/CRC, Boca Raton, FL, 2008, 267–329 | MR | Zbl
[6] Monk P., Finite Element Methods for Maxwell's Equations, Oxford science publications, Oxford, 2003 | Zbl