Iterative solver for systems of linear equations with a~sparse stiffness matrix for clusters
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 223-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a package of programs for solving systems of linear equations with a sparse matrix for computers with distributed memory is proposed. This package is based on the iterative algorithm for solving the initial system of equations with preconditioner constructed using the algebraic domain decomposition. Such an approach makes possible to multiply by the preconditioner and a stiffness matrix on cluster. Also, to improve the efficiency of computation, PARDISO and SparseBlas functionalities from Intel$\circledR$MKL library are used on each process. In addition to parallelization among processes, this package uses OpenMP parallelization on each of these processes as well as Intel$\circledR$MKL internal functional parallelization.
@article{SJVM_2012_15_2_a12,
     author = {A. A. Kalinkin and Yu. M. Laevsky},
     title = {Iterative solver for systems of linear equations with a~sparse stiffness matrix for clusters},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {223--228},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a12/}
}
TY  - JOUR
AU  - A. A. Kalinkin
AU  - Yu. M. Laevsky
TI  - Iterative solver for systems of linear equations with a~sparse stiffness matrix for clusters
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 223
EP  - 228
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a12/
LA  - ru
ID  - SJVM_2012_15_2_a12
ER  - 
%0 Journal Article
%A A. A. Kalinkin
%A Yu. M. Laevsky
%T Iterative solver for systems of linear equations with a~sparse stiffness matrix for clusters
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 223-228
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a12/
%G ru
%F SJVM_2012_15_2_a12
A. A. Kalinkin; Yu. M. Laevsky. Iterative solver for systems of linear equations with a~sparse stiffness matrix for clusters. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 223-228. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a12/

[1] Dongarra Jack J., Sameh Ahmed H., “On some parallel banded system solvers”, Parallel Computing, 1:3 (1984), 223–235 | DOI | MR

[2] Polizzi E., Sameh Ahmed H., “A parallel hybrid banded system solver: the spike algorithm”, Parallel Comput., 32:2 (2006), 177–194 | DOI | MR

[3] Polizzi E., Sameh Ahmed H., “Spike: A parallel environment for solving banded linear systems”, Computers Fluids, 36:1 (2007), 113–141 | DOI | MR

[4] Li Z., Saad Y., Sosonkina M., PARMs: a parallel version of the algebraic recursive multilevel solver, Report umsi-2001-100, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001

[5] Saad Y., Sosonkina M., PARMs: A package for the parallel iterative solution of general large sparse linear systems user's guide, Report UMSI2004-8, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2004

[6] Dryja M., Widlund O., An additive variant of the Schwarz alternating method for the case of many subregions, Technical report 339, also Ultracomputer Note 131, Department of Computer Science, Courant Institute, 1987

[7] Saad Y., Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003 | MR