Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 213-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we address the solution of three-dimensional heterogeneous Helmholtz problems discretized with compact fourth-order finite difference methods with application to acoustic waveform inversion in geophysics. In this setting, the numerical simulation of wave propagation phenomena requires the approximate solution of possibly very large linear systems of equations. We propose an iterative two-grid method where the coarse grid problem is solved inexactly. A single cycle of this method is used as a variable preconditioner for a flexible Krylov subspace method. Numerical results demonstrate the usefulness of the algorithm on a realistic three-dimensional application. The proposed numerical method allows us to solve wave propagation problems with single or multiple sources even at high frequencies on a reasonable number of cores of a distributed memory cluster.
@article{SJVM_2012_15_2_a11,
     author = {H. Calandra and S. Gratton and R. Lago and X. Pinel and X. Vasseur},
     title = {Two-level preconditioned {Krylov} subspace methods for the solution of three-dimensional heterogeneous {Helmholtz} problems in seismics},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {213--221},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/}
}
TY  - JOUR
AU  - H. Calandra
AU  - S. Gratton
AU  - R. Lago
AU  - X. Pinel
AU  - X. Vasseur
TI  - Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 213
EP  - 221
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/
LA  - ru
ID  - SJVM_2012_15_2_a11
ER  - 
%0 Journal Article
%A H. Calandra
%A S. Gratton
%A R. Lago
%A X. Pinel
%A X. Vasseur
%T Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 213-221
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/
%G ru
%F SJVM_2012_15_2_a11
H. Calandra; S. Gratton; R. Lago; X. Pinel; X. Vasseur. Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/

[1] Aminzadeh F., Brac J., Kunz T., 3-D Salt and Overthrust Models: Society of Exploration Geophysicists, 3-D Modeling Series, 1, 1997

[2] Berenger J.-P., “A perfectly matched layer for absorption of electromagnetic waves”, J. Comp. Phys., 114 (1994), 185–200 | DOI | MR | Zbl

[3] Berenger J.-P., “Three-dimensional perfectly matched layer for absorption of electromagnetic waves”, J. Comp. Phys., 127 (1996), 363–379 | DOI | MR | Zbl

[4] Bollhöfer M., Grote M. J., Schenk O., “Algebraic multilevel preconditioner for the solution of the Helmholtz equation in heterogeneous media”, SIAM J. Scientific Computing, 31 (2009), 3781–3805 | DOI | MR

[5] Calandra H., Gratton S., Langou J., Pinel X., Vasseur X., Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics, Technical Report TR/PA/11/14, CERFACS, Toulouse, 2011

[6] Cohen G., Higher-Order Numerical Methods for Transient Wave Equations, Springer, 2002 | MR

[7] Elman H., Ernst O., O'Leary D., Stewart M., “Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering”, Comput. Methods Appl. Mech. Engrg., 194:1 (2005), 1037–1055 | DOI | MR | Zbl

[8] Elman H. C., Ernst G., O'Leary D. P., “A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations”, SIAM J. Scientific Computing, 23 (2001), 1291–1315 | DOI | MR | Zbl

[9] Engquist B., Ying L., “Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers”, Multiscale Modeling and Simulation, 9:2 (2011), 686–710 | MR | Zbl

[10] Harari I., Turkel E., “Accurate finite difference methods for time-harmonic wave propagation”, J. Comp. Phys., 119 (1995), 252–270 | DOI | MR | Zbl

[11] Notay Y., “Convergence analysis of perturbed two-grid and multigrid methods”, SIAM J. Numerical Analysis, 45 (2007), 1035–1044 | DOI | MR | Zbl

[12] Pinel X., A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics, PhD thesis, CERFACS and INP, Toulouse, 2010

[13] Riyanti C. D., Kononov A., Erlangga Y. A., Plessix R.-E., Mulder W. A., Vuik C., Oosterlee C., “A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation”, J. Comp. Phys., 224 (2007), 431–448 | DOI | MR | Zbl

[14] Saad Y., “A flexible inner-outer preconditioned GMRES algorithm”, SIAM J. Scientific and Statistical Computing, 14 (1993), 461–469 | DOI | MR | Zbl

[15] Saad Y., Schultz M. H., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scientific and Statistical Computing, 7 (1986), 856–869 | DOI | MR | Zbl

[16] Simoncini V., Szyld D. B., “Recent computational developments in Krylov subspace methods for linear systems”, Numerical Linear Algebra with Applications, 14 (2007), 1–59 | DOI | MR | Zbl

[17] Stüben K., Trottenberg U., “Multigrid methods: fundamental algorithms, model problem analysis and applications”, Multigrid methods (Koeln-Porz, 1981), Lecture Notes in Mathematics, 960, eds. W. Hackbusch, U. Trottenberg, Springer-Verlag, 1982, 1–179 | DOI | MR

[18] Trottenberg U., Oosterlee C. W., Schüller A., Multigrid, Academic Press Inc., London–San Diego, 2001 | MR | Zbl

[19] Umetani N., MacLachlan S. P., Oosterlee C. W., “A multigrid-based shifted Laplacian preconditioner for fourth-order Helmholtz discretization”, Numerical Linear Algebra with Applications, 16 (2009), 603–626 | DOI | MR | Zbl

[20] Virieux J., Operto S., “An overview of full waveform inversion in exploration geophysics”, Geophysics, 74:6 (2009), WCC127–WCC152 | DOI

[21] Virieux J., Operto S., Ben Hadj Ali H., Brossier R., Etienne V., Sourbier F., Giraud L., Haidar A., “Seismic wave modeling for seismic imaging”, The Leading Edge, 25:8 (2009), 538–544 | DOI