Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_2_a11, author = {H. Calandra and S. Gratton and R. Lago and X. Pinel and X. Vasseur}, title = {Two-level preconditioned {Krylov} subspace methods for the solution of three-dimensional heterogeneous {Helmholtz} problems in seismics}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {213--221}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/} }
TY - JOUR AU - H. Calandra AU - S. Gratton AU - R. Lago AU - X. Pinel AU - X. Vasseur TI - Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 213 EP - 221 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/ LA - ru ID - SJVM_2012_15_2_a11 ER -
%0 Journal Article %A H. Calandra %A S. Gratton %A R. Lago %A X. Pinel %A X. Vasseur %T Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 213-221 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/ %G ru %F SJVM_2012_15_2_a11
H. Calandra; S. Gratton; R. Lago; X. Pinel; X. Vasseur. Two-level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 213-221. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a11/
[1] Aminzadeh F., Brac J., Kunz T., 3-D Salt and Overthrust Models: Society of Exploration Geophysicists, 3-D Modeling Series, 1, 1997
[2] Berenger J.-P., “A perfectly matched layer for absorption of electromagnetic waves”, J. Comp. Phys., 114 (1994), 185–200 | DOI | MR | Zbl
[3] Berenger J.-P., “Three-dimensional perfectly matched layer for absorption of electromagnetic waves”, J. Comp. Phys., 127 (1996), 363–379 | DOI | MR | Zbl
[4] Bollhöfer M., Grote M. J., Schenk O., “Algebraic multilevel preconditioner for the solution of the Helmholtz equation in heterogeneous media”, SIAM J. Scientific Computing, 31 (2009), 3781–3805 | DOI | MR
[5] Calandra H., Gratton S., Langou J., Pinel X., Vasseur X., Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics, Technical Report TR/PA/11/14, CERFACS, Toulouse, 2011
[6] Cohen G., Higher-Order Numerical Methods for Transient Wave Equations, Springer, 2002 | MR
[7] Elman H., Ernst O., O'Leary D., Stewart M., “Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering”, Comput. Methods Appl. Mech. Engrg., 194:1 (2005), 1037–1055 | DOI | MR | Zbl
[8] Elman H. C., Ernst G., O'Leary D. P., “A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations”, SIAM J. Scientific Computing, 23 (2001), 1291–1315 | DOI | MR | Zbl
[9] Engquist B., Ying L., “Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers”, Multiscale Modeling and Simulation, 9:2 (2011), 686–710 | MR | Zbl
[10] Harari I., Turkel E., “Accurate finite difference methods for time-harmonic wave propagation”, J. Comp. Phys., 119 (1995), 252–270 | DOI | MR | Zbl
[11] Notay Y., “Convergence analysis of perturbed two-grid and multigrid methods”, SIAM J. Numerical Analysis, 45 (2007), 1035–1044 | DOI | MR | Zbl
[12] Pinel X., A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics, PhD thesis, CERFACS and INP, Toulouse, 2010
[13] Riyanti C. D., Kononov A., Erlangga Y. A., Plessix R.-E., Mulder W. A., Vuik C., Oosterlee C., “A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation”, J. Comp. Phys., 224 (2007), 431–448 | DOI | MR | Zbl
[14] Saad Y., “A flexible inner-outer preconditioned GMRES algorithm”, SIAM J. Scientific and Statistical Computing, 14 (1993), 461–469 | DOI | MR | Zbl
[15] Saad Y., Schultz M. H., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scientific and Statistical Computing, 7 (1986), 856–869 | DOI | MR | Zbl
[16] Simoncini V., Szyld D. B., “Recent computational developments in Krylov subspace methods for linear systems”, Numerical Linear Algebra with Applications, 14 (2007), 1–59 | DOI | MR | Zbl
[17] Stüben K., Trottenberg U., “Multigrid methods: fundamental algorithms, model problem analysis and applications”, Multigrid methods (Koeln-Porz, 1981), Lecture Notes in Mathematics, 960, eds. W. Hackbusch, U. Trottenberg, Springer-Verlag, 1982, 1–179 | DOI | MR
[18] Trottenberg U., Oosterlee C. W., Schüller A., Multigrid, Academic Press Inc., London–San Diego, 2001 | MR | Zbl
[19] Umetani N., MacLachlan S. P., Oosterlee C. W., “A multigrid-based shifted Laplacian preconditioner for fourth-order Helmholtz discretization”, Numerical Linear Algebra with Applications, 16 (2009), 603–626 | DOI | MR | Zbl
[20] Virieux J., Operto S., “An overview of full waveform inversion in exploration geophysics”, Geophysics, 74:6 (2009), WCC127–WCC152 | DOI
[21] Virieux J., Operto S., Ben Hadj Ali H., Brossier R., Etienne V., Sourbier F., Giraud L., Haidar A., “Seismic wave modeling for seismic imaging”, The Leading Edge, 25:8 (2009), 538–544 | DOI