Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 45-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with studies of the detailed properties of absorbing boundary conditions M-PML (Multiaxial Perfectly Matched Layer) that arise when a computational domain is limited. These conditions are stable for any type of anisotropy with a correct choice of a stabilization parameter. In the first part of this paper [3], the authors show a linear dependence of the reflectivity on the stabilization parameter. Based on this study, the problem of finding the optimal stabilizing parameter, which provides stability and minimal reflection has been formulated. In this paper, we provide a necessary stability condition of M-PML, which allows limiting the lower value of the stabilizing parameter. It is shown that this criterion is not sufficient.
@article{SJVM_2012_15_1_a3,
     author = {M. N. Dmitriev and V. V. Lisitsa},
     title = {Application of absorbing boundary conditions {M-PML} for numerical simulation of wave propagation in anisotropic media. {Part~II:} {Stability}},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/}
}
TY  - JOUR
AU  - M. N. Dmitriev
AU  - V. V. Lisitsa
TI  - Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 45
EP  - 54
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/
LA  - ru
ID  - SJVM_2012_15_1_a3
ER  - 
%0 Journal Article
%A M. N. Dmitriev
%A V. V. Lisitsa
%T Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 45-54
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/
%G ru
%F SJVM_2012_15_1_a3
M. N. Dmitriev; V. V. Lisitsa. Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/

[1] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Izd-vo SO RAN, Novosibirsk, 1998

[2] Goldin S. V., Seismicheskie volny v anizotropnykh sredakh, Izd-vo SO RAN, Novosibirsk, 2008

[3] Dmitriev M. N., Lisitsa V. V., “Primenenie slabootrazhayuschikh granichnykh uslovii M-PML pri modelirovanii volnovykh protsessov v anizotropnykh sredakh. Chast I: Uroven otrazhenii”, Sib. zhurn. vychisl. matematiki, 14:4 (2011), 333–344

[4] Bécache E., Fauqueux S., Joly P., “Stability of perfectly matched layers, group velocities and anisotropic waves”, J. Comput. Phys., 188:2 (2003), 399–433 | DOI | MR | Zbl

[5] Berenger J.-P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl

[6] Collino F., Monk P. B., “Optimizing the perfectly matched layer”, Comput. Methods. Appl. Mech. Eng., 164 (1998), 157–171 | DOI | MR | Zbl

[7] Collino F., Tsogka C., “Application of the perfectly matched layer absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media”, Geophysics, 66 (2001), 294–307 | DOI

[8] Lisitsa V., Vishnevskiy D., “Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity”, Geophysical Prospecting, 58:4 (2010), 619–635 | DOI

[9] Meza-Fajardo Kristel C., Papageorgiou Apostolos S., “A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis”, Bulletin of the Seismological Society of America, 98:4 (2008), 1811–1836 | DOI

[10] Petropoulos P., “Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell's equations in rectangular, cylindrical and spherical coordinates”, SIAM J. Appl. Math., 60 (2000), 1037–1058 | DOI | MR | Zbl

[11] Thomsen L., “Weak elastic anisotropy”, Geophysics, 51:10 (1986), 1954–1966 | DOI

[12] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI

[13] Wang Z., “Seismic anisotropy in sedimentary rocks. Part 2: Laboratory data”, Geophysics, 67:5 (2002), 1423–1440 | DOI

[14] Winterstein D. F., “Velocity anisotropy terminology for geophysicists”, Geophysics, 55:8 (1990), 1070–1088 | DOI