Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_1_a3, author = {M. N. Dmitriev and V. V. Lisitsa}, title = {Application of absorbing boundary conditions {M-PML} for numerical simulation of wave propagation in anisotropic media. {Part~II:} {Stability}}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {45--54}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/} }
TY - JOUR AU - M. N. Dmitriev AU - V. V. Lisitsa TI - Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 45 EP - 54 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/ LA - ru ID - SJVM_2012_15_1_a3 ER -
%0 Journal Article %A M. N. Dmitriev %A V. V. Lisitsa %T Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 45-54 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/ %G ru %F SJVM_2012_15_1_a3
M. N. Dmitriev; V. V. Lisitsa. Application of absorbing boundary conditions M-PML for numerical simulation of wave propagation in anisotropic media. Part~II: Stability. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a3/
[1] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Izd-vo SO RAN, Novosibirsk, 1998
[2] Goldin S. V., Seismicheskie volny v anizotropnykh sredakh, Izd-vo SO RAN, Novosibirsk, 2008
[3] Dmitriev M. N., Lisitsa V. V., “Primenenie slabootrazhayuschikh granichnykh uslovii M-PML pri modelirovanii volnovykh protsessov v anizotropnykh sredakh. Chast I: Uroven otrazhenii”, Sib. zhurn. vychisl. matematiki, 14:4 (2011), 333–344
[4] Bécache E., Fauqueux S., Joly P., “Stability of perfectly matched layers, group velocities and anisotropic waves”, J. Comput. Phys., 188:2 (2003), 399–433 | DOI | MR | Zbl
[5] Berenger J.-P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl
[6] Collino F., Monk P. B., “Optimizing the perfectly matched layer”, Comput. Methods. Appl. Mech. Eng., 164 (1998), 157–171 | DOI | MR | Zbl
[7] Collino F., Tsogka C., “Application of the perfectly matched layer absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media”, Geophysics, 66 (2001), 294–307 | DOI
[8] Lisitsa V., Vishnevskiy D., “Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity”, Geophysical Prospecting, 58:4 (2010), 619–635 | DOI
[9] Meza-Fajardo Kristel C., Papageorgiou Apostolos S., “A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis”, Bulletin of the Seismological Society of America, 98:4 (2008), 1811–1836 | DOI
[10] Petropoulos P., “Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell's equations in rectangular, cylindrical and spherical coordinates”, SIAM J. Appl. Math., 60 (2000), 1037–1058 | DOI | MR | Zbl
[11] Thomsen L., “Weak elastic anisotropy”, Geophysics, 51:10 (1986), 1954–1966 | DOI
[12] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI
[13] Wang Z., “Seismic anisotropy in sedimentary rocks. Part 2: Laboratory data”, Geophysics, 67:5 (2002), 1423–1440 | DOI
[14] Winterstein D. F., “Velocity anisotropy terminology for geophysicists”, Geophysics, 55:8 (1990), 1070–1088 | DOI