Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 425-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a modified method of characteristics in combination with integral identities of triangular and tetrahedral linear elements is used to prove a uniform optimal-order error estimate which depends only on the initial data and right-hand side, but not on a scaling parameter $\varepsilon$, for multi-dimensional time-dependent advection-diffusion equations.
@article{SJVM_2011_14_4_a6,
     author = {H. Chen and Q. Lin and V. V. Shaidurov and J. Zhou},
     title = {Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {425--442},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/}
}
TY  - JOUR
AU  - H. Chen
AU  - Q. Lin
AU  - V. V. Shaidurov
AU  - J. Zhou
TI  - Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 425
EP  - 442
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/
LA  - ru
ID  - SJVM_2011_14_4_a6
ER  - 
%0 Journal Article
%A H. Chen
%A Q. Lin
%A V. V. Shaidurov
%A J. Zhou
%T Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 425-442
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/
%G ru
%F SJVM_2011_14_4_a6
H. Chen; Q. Lin; V. V. Shaidurov; J. Zhou. Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 425-442. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/

[1] Bear J., Dynamics of Fluids in Porous Materials, American Elsevier, New York, 1972

[2] Peaceman D. W., Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977

[3] Roos H.-G., Stynes M., Tobiska L., Robust Numerical Methods for Singularly Perturbed Differential Equations, second edition, Springer-Verlag, Berlin, 2008 | MR

[4] Ewing R. E., The Mathematics of Reservoir Simulation, SIAM, Philadelphia, 1983 | MR | Zbl

[5] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987 | MR

[6] Arbogast T., Wheeler M. F., “A characteristic-mixed finite element method for advection-dominated transport problems”, SIAM Numer. Anal., 32:2 (1995), 404–424 | DOI | MR | Zbl

[7] Douglas J. (jr.), Huang C. S., Pereira F., “The modified method of characteristics with adjusted advection”, Numer. Math., 83:3 (1999), 353–369 | DOI | MR | Zbl

[8] Douglas J. (jr.), Russell T. F., “Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures”, SIAM Numer. Anal., 19:5 (1982), 871–885 | DOI | MR | Zbl

[9] Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, 1054, Springer-Verlag, New York, 1984 | MR | Zbl

[10] Wang H., “An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations”, SIAM J. Numer. Anal., 37:4 (2000), 1338–1368 | DOI | MR | Zbl

[11] Wang K., “A uniformly optimal-order error estimate of an ELLAM scheme for unsteady-state advection-diffusion equations”, Intern. J. of Numerical Analysis and Modeling, 5:1 (2008), 286–302 | MR | Zbl

[12] Bause M., Knabner P., “Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems”, SIAM J. Numer. Anal., 39:6 (2002), 1954–1984 | DOI | MR | Zbl

[13] Wang H., Wang K., “Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems”, SIAM J. Numer. Anal., 45:3 (2007), 1305–1329 | DOI | MR | Zbl

[14] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Rhode Island, 1998 | MR | Zbl

[15] Ciarlet P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland, Amsterdam, 1978 | MR | Zbl

[16] Lin Q., Lin J. F., Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006

[17] Lin Q., Zhou J. M., Chen H. T., “Superclose and extrapolation of the tetrahedral linear finite elements for elliptic rroblem”, Mathematics in Practice and Theory, 39:15 (2009), 200–208 (Chinese) | MR

[18] Grossmann C., Roos H.-G., Stynes M., Numerical Treatment of Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl

[19] Krizek M., Neittaamaki P., “On superconvergence techniques”, Acta Appl. Math., 9 (1987), 175–198 | DOI | MR | Zbl

[20] Shaidurov V. V., Multigrid Methods for Finite Elements, Kluwer Academic, Dordrecht, 1995 | MR | Zbl

[21] Gilyova L. V., Shaidurov V. V., “A cascadic multigrid algorithm in the finite element method for the three-dimensional Dirichlet problem in a curvilinear boundary domain”, Siberian J. Num. Math. Sib. Branch of Russ. Acad. of Sci., 5:2 (2002), 127–147 | Zbl

[22] Pironneau O., “On the transport-diffusion algorithm and its application to the Navier–Stokes equations”, Numer. Math., 38 (1982), 309–332 | DOI | MR | Zbl

[23] Farrell P. A., Hegarty A. F., Miller J. J. H., Riordan E. O., Shishkin G. I., Robust Computational Techniques for Boundary Layers, Chapman and Hall, London, 2000 | MR | Zbl