Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_4_a6, author = {H. Chen and Q. Lin and V. V. Shaidurov and J. Zhou}, title = {Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {425--442}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/} }
TY - JOUR AU - H. Chen AU - Q. Lin AU - V. V. Shaidurov AU - J. Zhou TI - Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 425 EP - 442 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/ LA - ru ID - SJVM_2011_14_4_a6 ER -
%0 Journal Article %A H. Chen %A Q. Lin %A V. V. Shaidurov %A J. Zhou %T Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 425-442 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/ %G ru %F SJVM_2011_14_4_a6
H. Chen; Q. Lin; V. V. Shaidurov; J. Zhou. Error estimates for triangular and tetrahedral finite elements in combination with a~trajectory approximation of the first derivatives for advection-diffusion equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 425-442. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a6/
[1] Bear J., Dynamics of Fluids in Porous Materials, American Elsevier, New York, 1972
[2] Peaceman D. W., Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 1977
[3] Roos H.-G., Stynes M., Tobiska L., Robust Numerical Methods for Singularly Perturbed Differential Equations, second edition, Springer-Verlag, Berlin, 2008 | MR
[4] Ewing R. E., The Mathematics of Reservoir Simulation, SIAM, Philadelphia, 1983 | MR | Zbl
[5] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987 | MR
[6] Arbogast T., Wheeler M. F., “A characteristic-mixed finite element method for advection-dominated transport problems”, SIAM Numer. Anal., 32:2 (1995), 404–424 | DOI | MR | Zbl
[7] Douglas J. (jr.), Huang C. S., Pereira F., “The modified method of characteristics with adjusted advection”, Numer. Math., 83:3 (1999), 353–369 | DOI | MR | Zbl
[8] Douglas J. (jr.), Russell T. F., “Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures”, SIAM Numer. Anal., 19:5 (1982), 871–885 | DOI | MR | Zbl
[9] Thomée V., Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics, 1054, Springer-Verlag, New York, 1984 | MR | Zbl
[10] Wang H., “An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations”, SIAM J. Numer. Anal., 37:4 (2000), 1338–1368 | DOI | MR | Zbl
[11] Wang K., “A uniformly optimal-order error estimate of an ELLAM scheme for unsteady-state advection-diffusion equations”, Intern. J. of Numerical Analysis and Modeling, 5:1 (2008), 286–302 | MR | Zbl
[12] Bause M., Knabner P., “Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems”, SIAM J. Numer. Anal., 39:6 (2002), 1954–1984 | DOI | MR | Zbl
[13] Wang H., Wang K., “Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems”, SIAM J. Numer. Anal., 45:3 (2007), 1305–1329 | DOI | MR | Zbl
[14] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Rhode Island, 1998 | MR | Zbl
[15] Ciarlet P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland, Amsterdam, 1978 | MR | Zbl
[16] Lin Q., Lin J. F., Finite Element Methods: Accuracy and Improvement, Science Press, Beijing, 2006
[17] Lin Q., Zhou J. M., Chen H. T., “Superclose and extrapolation of the tetrahedral linear finite elements for elliptic rroblem”, Mathematics in Practice and Theory, 39:15 (2009), 200–208 (Chinese) | MR
[18] Grossmann C., Roos H.-G., Stynes M., Numerical Treatment of Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[19] Krizek M., Neittaamaki P., “On superconvergence techniques”, Acta Appl. Math., 9 (1987), 175–198 | DOI | MR | Zbl
[20] Shaidurov V. V., Multigrid Methods for Finite Elements, Kluwer Academic, Dordrecht, 1995 | MR | Zbl
[21] Gilyova L. V., Shaidurov V. V., “A cascadic multigrid algorithm in the finite element method for the three-dimensional Dirichlet problem in a curvilinear boundary domain”, Siberian J. Num. Math. Sib. Branch of Russ. Acad. of Sci., 5:2 (2002), 127–147 | Zbl
[22] Pironneau O., “On the transport-diffusion algorithm and its application to the Navier–Stokes equations”, Numer. Math., 38 (1982), 309–332 | DOI | MR | Zbl
[23] Farrell P. A., Hegarty A. F., Miller J. J. H., Riordan E. O., Shishkin G. I., Robust Computational Techniques for Boundary Layers, Chapman and Hall, London, 2000 | MR | Zbl