Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 381-396

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of unconstrained minimization of a semicoercive nondifferentiable functional corresponding to a model friction problem is reduced to a problem of constrained minimization of a differentiable functional. An algorithm based on an iterative proximal regularization of a modified Lagrangian functional is used for solving the problem thus obtained. Convergence of a finite element solution is investigated. The results of numerical calculation are presented.
@article{SJVM_2011_14_4_a3,
     author = {N. N. Kushniruk and R. V. Namm},
     title = {Iterative proximal regularization of a~modified {Lagrangian} functional for solving a~semicoercive model problem with friction},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {381--396},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/}
}
TY  - JOUR
AU  - N. N. Kushniruk
AU  - R. V. Namm
TI  - Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 381
EP  - 396
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/
LA  - ru
ID  - SJVM_2011_14_4_a3
ER  - 
%0 Journal Article
%A N. N. Kushniruk
%A R. V. Namm
%T Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 381-396
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/
%G ru
%F SJVM_2011_14_4_a3
N. N. Kushniruk; R. V. Namm. Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 381-396. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/