Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_4_a3, author = {N. N. Kushniruk and R. V. Namm}, title = {Iterative proximal regularization of a~modified {Lagrangian} functional for solving a~semicoercive model problem with friction}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {381--396}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/} }
TY - JOUR AU - N. N. Kushniruk AU - R. V. Namm TI - Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 381 EP - 396 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/ LA - ru ID - SJVM_2011_14_4_a3 ER -
%0 Journal Article %A N. N. Kushniruk %A R. V. Namm %T Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 381-396 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/ %G ru %F SJVM_2011_14_4_a3
N. N. Kushniruk; R. V. Namm. Iterative proximal regularization of a~modified Lagrangian functional for solving a~semicoercive model problem with friction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 381-396. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a3/
[1] Kushniruk N. N., “Metod Udzavy s modifitsirovannoi funktsiei Lagranzha dlya resheniya zadachi o dvizhenii zhidkosti v beskonechnoi trube s treniem na granitse”, Informatika i sistemy upravleniya, 2009, no. 1(19), 3–14
[2] Kushniruk N. N., Namm R. V., “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sib. zhurn. vychisl. matematiki. RAN. Sib. otd-nie, 12:4 (2009), 409–420 | Zbl
[3] Kushniruk N. N., Namm R. V., “Ob odnom podkhode k resheniyu polukoertsitivnoi modelnoi zadachi s treniem”, Dalnevostochnyi matem. zhurn., 8:2 (2008), 171–179 | MR
[4] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR
[5] Namm R. V., “O edinstvennosti gladkogo resheniya v statisticheskoi zadache s treniem po zakonu Kulona i dvustoronnim kontaktom”, Prikladnaya matematika i mekhanika, 59:2 (1995), 330–335 | MR | Zbl
[6] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR
[7] Bertsekas D. P., Nonlinear Programming, Athena Scientific, Belmont–Massachusetts, 1999 | Zbl
[8] Vu G., Kim S., Namm R. V., Sachkov S. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zhurn. vychisl. matem. i mat. fiziki, 46:11 (2006), 2024–2031 | MR
[9] Antipin A. S., Metody nelineinogo programmirovaniya, osnovannye na pryamoi i dvoistvennoi modifikatsii funktsii Lagranzha, Preprint, VNII sistemnykh issledovanii, Moskva, 1979
[10] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl
[11] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka. Sibirskoe otd-nie, Novosibirsk, 1981 | Zbl
[12] Kushniruk N. N., Optimizatsionnye metody resheniya variatsionnykh neravenstv, Dis. $\dots$ kand. fiz.-mat. nauk., Khabarovsk, 2010
[13] Grisvard P., Boundary Value Problems in Non-Smooth Domains, Univ. Dept. Math. College Park, Maryland, MD, 1980
[14] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[15] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR
[16] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl
[17] Khludnev A. M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[18] Kovtunenko V. A., “Variatsionnaya i kraevaya zadachi s treniem na vnutrennei granitse”, Sibirskii matem. zhurn., 39:5 (1998), 1060–1073 | MR | Zbl
[19] Christensen P. W., Klarbring A., Pang J. S., Stroemberg N., “Formulation and comparison of algorithms for frictional contact problems”, Int. J. Numer. Meth. Eng., 42 (1998), 145–173 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Kazufumi Ito, Karl Kunisch, “Augmented Lagrangian methods for nonsmoth, convex optimization in Hilbert space”, Nonlinear Analysis, 41 (2000), 591–616 | DOI | MR | Zbl
[21] Kunusch K., Stadler G., “Generalized Newton methods for the 2D-Signorini contact problem with friction in function space”, Math. Modeling Numer. Anal., 39 (2005), 827–854 | DOI | MR