Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_4_a2, author = {Z. Kamont and K. Kropielnicka}, title = {Implicit difference methods for evolution functional differential equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {361--379}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/} }
TY - JOUR AU - Z. Kamont AU - K. Kropielnicka TI - Implicit difference methods for evolution functional differential equations JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 361 EP - 379 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/ LA - ru ID - SJVM_2011_14_4_a2 ER -
Z. Kamont; K. Kropielnicka. Implicit difference methods for evolution functional differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 361-379. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/
[1] Brandi P., Kamont Z., Salvadori A., “Approximate solutions of mixed problems for first order partial differential-functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 39:1 (1991), 277–302 | MR | Zbl
[2] Brzychczy S., “Existence of solutions for nonlinear systems of differential functional equations of parabolic type in an arbitrary domain”, Ann. Polon. Math., 47 (1987), 309–317 | MR | Zbl
[3] Czernous W., “Generalized solutions of mixed problems for first order partial functional differential equations”, Ukrain. Mat. Zh., 58 (2006), 803–828 | MR
[4] Czernous W., Kamont Z., “Implicit difference methods for parabolic functional differential equations”, ZAMM Z. Angew. Math. Mech., 85:5 (2005), 326–338 | DOI | MR | Zbl
[5] Kamont Z., Czernous W., “Implicit difference methods for Hamilton–Jacobi functional differential equations”, Numerical Analysis and Applications, 2:1 (2009), 57–70 | DOI
[6] Jäger W., Simon L., “On a system of quasilinear parabolicfunctional differential equations”, Acta Math. Hungar., 112 (2006), 39–55 | DOI | MR
[7] Kamont Z., Leszczyński H., “Stability of difference equations generated by parabolic differential-functional problems”, Rend. Mat. Appl. (7), 16:2 (1996), 265–287 | MR | Zbl
[8] Kamont Z., Hyperbolic Functional Differential Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl
[9] Kȩpczyńska A., “Implicit difference methods for first order partial differential functional equations”, Func. Diff. Eq., 14:2–4 (2007), 279–298 | MR
[10] Kȩpczyńska A., “Implicit difference methods for quasilinear differential functional equations on the Haar pyramid”, Z. Anal. Andwend., 27:2 (2008), 213–231 | DOI | MR
[11] Kropielnicka K., “Implicit difference methods for nonlinear parabolic functional differential systems”, Demonstratio Math., 39:3 (2006), 711–728 | MR | Zbl
[12] Malec M., “Sur une famille bi-paramétrique des schémas des différences finies pour l'équation parabolique sans dérivées mixtes”, Ann. Polon. Math., 31:1 (1975), 47–54 | MR | Zbl
[13] Malec M., “Sur une famille bi-paramétrique des schémas des différences finies pour un systéme d'équation paraboliques aux dérivées mixtes et avec des conditions aux limites du type de Neumann”, Ann. Polon. Math., 32:1 (1976), 33–42 | MR | Zbl
[14] Pao C. V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, J. Math. Anal. Appl., 240 (1999), 249–279 | DOI | MR | Zbl
[15] Pao C. V., “Finite difference reaction diffusion systems with coupled boundary conditions and time delays”, J. Math. Anal. Appl., 272 (2002), 407–434 | DOI | MR | Zbl
[16] Redheffer R., Walter W., “Stability of the null solution of parabolic functional inequalities”, Trans. Amer. Math. Soc., 262:1 (1980), 285–302 | DOI | MR | Zbl
[17] Redlinger R., “Existence theorems for semilinear parabolic systems with functionals”, Nonlinear Anal. Theory. Methods and Applications, 8:6 (1984), 667–682 | DOI | MR | Zbl
[18] Sapa L., “A finite difference method for quasi-linear and nonlinear differential functional parabolic equations with Dirichlet's condition”, Ann. Polon. Math., 93:2 (2008), 113–133 | DOI | MR | Zbl
[19] Szarski J., “Uniqueness of the solution to a mixed problem for parabolic functional-differential equations in arbitrary domains”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24:10 (1976), 841–849 | MR | Zbl
[20] Voigt W., On finite-difference methods for parabolic functional-differential equations on unbounded domains, Publ. House Bulgar. Acad. Sci., Sofia, 1989 | MR | Zbl
[21] Yuan-Ming W., Pao C., “Time delayed finite difference reaction-diffusion systems with nonquasimonotone functional”, Numer. Math., 103 (2006), 485–513 | DOI | MR | Zbl
[22] Wu J., Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York, 1996 | MR