Implicit difference methods for evolution functional differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 361-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general theory of implicit difference schemes for nonlinear functional differential equations with initial boundary conditions is presented. A theorem on error estimates of approximate solutions for implicit functional difference equations of the Volterra type with an unknown function of several variables is given. This general result is employed to investigate the stability of implicit difference schemes generated by first-order partial differential functional equations and by parabolic problems. A comparison technique with nonlinear estimates of the Perron type for given functions with respect to the functional variable is used.
@article{SJVM_2011_14_4_a2,
     author = {Z. Kamont and K. Kropielnicka},
     title = {Implicit difference methods for evolution functional differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {361--379},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/}
}
TY  - JOUR
AU  - Z. Kamont
AU  - K. Kropielnicka
TI  - Implicit difference methods for evolution functional differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 361
EP  - 379
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/
LA  - ru
ID  - SJVM_2011_14_4_a2
ER  - 
%0 Journal Article
%A Z. Kamont
%A K. Kropielnicka
%T Implicit difference methods for evolution functional differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 361-379
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/
%G ru
%F SJVM_2011_14_4_a2
Z. Kamont; K. Kropielnicka. Implicit difference methods for evolution functional differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 361-379. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a2/

[1] Brandi P., Kamont Z., Salvadori A., “Approximate solutions of mixed problems for first order partial differential-functional equations”, Atti Sem. Mat. Fis. Univ. Modena, 39:1 (1991), 277–302 | MR | Zbl

[2] Brzychczy S., “Existence of solutions for nonlinear systems of differential functional equations of parabolic type in an arbitrary domain”, Ann. Polon. Math., 47 (1987), 309–317 | MR | Zbl

[3] Czernous W., “Generalized solutions of mixed problems for first order partial functional differential equations”, Ukrain. Mat. Zh., 58 (2006), 803–828 | MR

[4] Czernous W., Kamont Z., “Implicit difference methods for parabolic functional differential equations”, ZAMM Z. Angew. Math. Mech., 85:5 (2005), 326–338 | DOI | MR | Zbl

[5] Kamont Z., Czernous W., “Implicit difference methods for Hamilton–Jacobi functional differential equations”, Numerical Analysis and Applications, 2:1 (2009), 57–70 | DOI

[6] Jäger W., Simon L., “On a system of quasilinear parabolicfunctional differential equations”, Acta Math. Hungar., 112 (2006), 39–55 | DOI | MR

[7] Kamont Z., Leszczyński H., “Stability of difference equations generated by parabolic differential-functional problems”, Rend. Mat. Appl. (7), 16:2 (1996), 265–287 | MR | Zbl

[8] Kamont Z., Hyperbolic Functional Differential Inequalities and Applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[9] Kȩpczyńska A., “Implicit difference methods for first order partial differential functional equations”, Func. Diff. Eq., 14:2–4 (2007), 279–298 | MR

[10] Kȩpczyńska A., “Implicit difference methods for quasilinear differential functional equations on the Haar pyramid”, Z. Anal. Andwend., 27:2 (2008), 213–231 | DOI | MR

[11] Kropielnicka K., “Implicit difference methods for nonlinear parabolic functional differential systems”, Demonstratio Math., 39:3 (2006), 711–728 | MR | Zbl

[12] Malec M., “Sur une famille bi-paramétrique des schémas des différences finies pour l'équation parabolique sans dérivées mixtes”, Ann. Polon. Math., 31:1 (1975), 47–54 | MR | Zbl

[13] Malec M., “Sur une famille bi-paramétrique des schémas des différences finies pour un systéme d'équation paraboliques aux dérivées mixtes et avec des conditions aux limites du type de Neumann”, Ann. Polon. Math., 32:1 (1976), 33–42 | MR | Zbl

[14] Pao C. V., “Numerical methods for systems of nonlinear parabolic equations with time delays”, J. Math. Anal. Appl., 240 (1999), 249–279 | DOI | MR | Zbl

[15] Pao C. V., “Finite difference reaction diffusion systems with coupled boundary conditions and time delays”, J. Math. Anal. Appl., 272 (2002), 407–434 | DOI | MR | Zbl

[16] Redheffer R., Walter W., “Stability of the null solution of parabolic functional inequalities”, Trans. Amer. Math. Soc., 262:1 (1980), 285–302 | DOI | MR | Zbl

[17] Redlinger R., “Existence theorems for semilinear parabolic systems with functionals”, Nonlinear Anal. Theory. Methods and Applications, 8:6 (1984), 667–682 | DOI | MR | Zbl

[18] Sapa L., “A finite difference method for quasi-linear and nonlinear differential functional parabolic equations with Dirichlet's condition”, Ann. Polon. Math., 93:2 (2008), 113–133 | DOI | MR | Zbl

[19] Szarski J., “Uniqueness of the solution to a mixed problem for parabolic functional-differential equations in arbitrary domains”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24:10 (1976), 841–849 | MR | Zbl

[20] Voigt W., On finite-difference methods for parabolic functional-differential equations on unbounded domains, Publ. House Bulgar. Acad. Sci., Sofia, 1989 | MR | Zbl

[21] Yuan-Ming W., Pao C., “Time delayed finite difference reaction-diffusion systems with nonquasimonotone functional”, Numer. Math., 103 (2006), 485–513 | DOI | MR | Zbl

[22] Wu J., Theory and Applications of Partial Functional-Differential Equations, Springer-Verlag, New York, 1996 | MR