Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_4_a0, author = {M. N. Dmitriev and V. V. Lisitsa}, title = {Application of {M-PML} absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. {Part~I:} reflectivity}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {333--344}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a0/} }
TY - JOUR AU - M. N. Dmitriev AU - V. V. Lisitsa TI - Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part~I: reflectivity JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 333 EP - 344 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a0/ LA - ru ID - SJVM_2011_14_4_a0 ER -
%0 Journal Article %A M. N. Dmitriev %A V. V. Lisitsa %T Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part~I: reflectivity %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 333-344 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a0/ %G ru %F SJVM_2011_14_4_a0
M. N. Dmitriev; V. V. Lisitsa. Application of M-PML absorbing boundary conditions to the numerical simulation of wave propagation in anisotropic media. Part~I: reflectivity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 333-344. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a0/
[1] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Izd-vo SO RAN, Novosibirsk, 1998
[2] Goldin S. V., Seismicheskie volny v anizotropnykh sredakh, Izd-vo SO RAN, Novosibirsk, 2008
[3] Lisitsa V. V., “Nerasscheplennyi idealno soglasovannyi sloi dlya sistemy uravnenii dinamicheskoi teorii uprugosti”, Sib. zhurn. vychisl. matematiki. RAN. Sib. otd-nie, 10:3 (2007), 285–297
[4] Alpert B., Greengard L., Hagstrom T., “Rapid evaluation of nonreflecting boundary kernels for 15 time-domain wavepropagation”, SAIM J. Numer. Anal., 37 (2000), 1138–1164 | DOI | MR | Zbl
[5] Alpert B., Greengard L., Hagstrom T., “Nonreflecting boundary conditions for the time-dependent wave equation”, J. Comput. Phys., 180 (2002), 270–296 | DOI | MR | Zbl
[6] Appelo D., Hagstrom T., Kreiss G., “Perfectly matched layers for hyperbolic systems: general formulation, well-posednessand stability”, SIAM J. Appl. Math., 67 (2006), 1–23 | DOI | MR | Zbl
[7] Appelo D., Kreiss G., “A new absorbing layer for elastic waves”, J. Comput. Phys., 215 (2005), 642–660 | DOI | MR
[8] Asvadurov S., Druskin V., Guddati M. N., Knizhnerman L., “On optimal finite-difference approximation of PML”, SAIM J. Numer. Anal., 41:1 (2003), 287–305 | DOI | MR | Zbl
[9] Bayliss A., Turkel E., “Radiation boundary conditions for wave-like equations”, Comm. Pure and Appl. Math., 33 (1980), 707–725 | DOI | MR | Zbl
[10] Bécache E., Fauqueux S., Joly P., “Stability of perfectly matched layers, group velocities and anisotropic waves”, J. Comput. Phys., 188:2 (2003), 399–433 | DOI | MR | Zbl
[11] Bécache E., Givoli D., Hagstrom T., “High-order absorbing boundary conditions for anisotropic and convective wave equations”, J. Comput. Phys., 229:4 (2010), 1099–1129 | DOI | MR | Zbl
[12] Berenger J.-P., “A perfectly matched layer for the absorption of electromagnetic waves”, J. Comput. Phys., 114 (1994), 185–200 | DOI | MR | Zbl
[13] Collino F., Monk P. B., “Optimizing the perfectly matched layer”, Comput. Methods Appl. Mech. Eng., 164 (1998), 157–171 | DOI | MR | Zbl
[14] Collino F., Tsogka C., “Application of the perfectly matched layer absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media”, Geophysics, 66 (2001), 294–307 | DOI
[15] Engquist B., Majda A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31 (1977), 629–651 | DOI | MR | Zbl
[16] Hagstrom T., Goodrich J., “Accurate radiation boundary conditions for the linearized euler equations in Cartesian domains”, SIAM J. Sci. Comput., 24 (2003), 770–795 | DOI | MR
[17] Higdon R., “Numerical absorbing boundary conditions for the wave equation”, Math. Comput., 49 (1987), 65–90 | DOI | MR | Zbl
[18] Hiptmair R., Schadle A., “Non-reflecting boundary conditions for Maxwell's equations”, Computing, 71 (2003), 265–292 | DOI | MR | Zbl
[19] Komatitsch D., Martin R., “An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation”, Geophysics, 72:5 (2007), SM155–SM167 | DOI
[20] Lindman E., “Free space boundary conditions for the time dependent wave equation”, J. Comput. Phys., 18 (1975), 66–78 | DOI | Zbl
[21] Lisitsa V., Lys E., “Reflectionless truncation of target area for axially symmetric anisotropic elasticity”, J. of Computational and Applied Mathematics, 234:6 (2010), 1803–1809 | DOI | MR | Zbl
[22] Lisitsa V., Vishnevskiy D., “Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity”, Geophysical Prospecting, 58:4 (2010), 619–635 | DOI
[23] Lisitsa V., “Optimal discretization of PML for elasticity problems”, Electron. Trans. Numer. Anal., 30 (2008), 258–277 | MR | Zbl
[24] Lubich C., Schadle A., “Fast convolution for non-reflecting boundary conditions”, SIAM J. Sci. Comput., 24 (2002), 161–182 | DOI | MR | Zbl
[25] Meza-Fajardo Kristel C., Papageorgiou Apostolos S., “A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis”, Bulletin of the Seismological Society of America, 98:4 (2008), 1811–1836 | DOI
[26] Petropoulos P., “Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell's equations in rectangular, cylindrical and spherical coordinates”, SIAM J. Appl. Math., 60 (2000), 1037–1058 | DOI | MR | Zbl
[27] Savadatti S., Guddati M. N., “Absorbing boundary conditions for scalar waves in anisotropic media. I: Time harmonic modeling”, J. Comput. Phys., 229:19 (2010), 6696–6714 | DOI | MR | Zbl
[28] Savadatti S., Guddati M. N., “Absorbing boundary conditions for scalar waves in anisotropic media. II: Time-dependent modeling”, J. Comput. Phys., 229:18 (2010), 6644–6662 | DOI | MR | Zbl
[29] Sofronov I. L., “Artificial boundary conditions of absolute transparency for two and three-dimensional external time-dependent scattering problems”, Euro. J. Appl. Math., 9:6 (1998), 561–588 | DOI | MR | Zbl
[30] Tsynkov S. V., “Numerical solution of problems on unbounded domain. A review”, Applied Numerical Mathematics, 27:4 (1998), 465–532 | DOI | MR | Zbl
[31] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI