Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_3_a7, author = {M. V. Urev}, title = {Convergence of a~discrete scheme in a~regularization method for the quasi-stationary {Maxwell} system in a~non-homogeneous conducting medium}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {319--332}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a7/} }
TY - JOUR AU - M. V. Urev TI - Convergence of a~discrete scheme in a~regularization method for the quasi-stationary Maxwell system in a~non-homogeneous conducting medium JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 319 EP - 332 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a7/ LA - ru ID - SJVM_2011_14_3_a7 ER -
%0 Journal Article %A M. V. Urev %T Convergence of a~discrete scheme in a~regularization method for the quasi-stationary Maxwell system in a~non-homogeneous conducting medium %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 319-332 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a7/ %G ru %F SJVM_2011_14_3_a7
M. V. Urev. Convergence of a~discrete scheme in a~regularization method for the quasi-stationary Maxwell system in a~non-homogeneous conducting medium. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 319-332. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a7/
[1] Kalinin A. V., Kalinkina A. A., “Kvazistatsionarnye nachalno-kraevye zadachi dlya sistemy uravnenii Maksvella”, Vestnik NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie (Nizhnii Novgorod), 2003, no. 26, 21–39
[2] Gudovich I. S., Krein S. G., Kulikov I. M., “Kraevye zadachi dlya uravnenii Maksvella”, Doklady AN SSSR, 207:2 (1972), 321–324 | MR
[3] Ivanov M. I., Kateshov V. A., Kremer I. A., Urev M. V., “Reshenie trekhmernykh nestatsionarnykh zadach impulsnoi elektrorazvedki”, Avtometriya, 43:2 (2007), 33–44
[4] Kremer I. A., Urev M. V., “Metod regulyarizatsii statsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:2 (2009), 161–170 | Zbl
[5] Kremer I. A., Urev M. V., “Reshenie metodom konechnykh elementov regulyarizirovannoi zadachi dlya statsionarnogo magnitnogo polya v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 13:1 (2010), 33–49 | Zbl
[6] Kremer I. A., Urev M. V., “Metod regulyarizatsii dlya kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 11:1 (2011), 35–44
[7] Nedelec J. C., “A new family of mixed finite elements in $\mathbb R^3$”, Numer. Math., 50 (1986), 57–81 | DOI | MR | Zbl
[8] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[9] Girault V., Raviart P.-A., Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1986 | MR | Zbl
[10] Amrouche C., Bernardi C., Dauge M., Girault V., “Vector potentials in three-dimensional nonsmooth domains”, Math. Meth. Appl. Sci., 21:9 (1998), 823–864 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Costabel M., Dauge M., Nicaise S., “Singularities of Maxwell interface problems”, M2AN Math. Model. Numer. Anal., 33:3 (1999), 627–649 | DOI | MR | Zbl
[12] Ciarlet P., Zou J., “Fully discrete finite element approaches for time-dependent Maxwell's equations”, Numer. Math., 82 (1999), 193–219 | DOI | MR | Zbl
[13] Chen Z., Du Q., Zou J., “Finite element methods with matching and non-matching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Anal., 37 (2000), 1542–1570 | DOI | MR | Zbl
[14] Alonso A., Valli A., “An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations”, Math. Comp., 68:226 (1999), 607–631 | DOI | MR | Zbl
[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[16] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR