Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_3_a6, author = {S. V. Smirnov}, title = {On the internal {Kelvin} waves in a~two-layer liquid model}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {303--317}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a6/} }
S. V. Smirnov. On the internal Kelvin waves in a~two-layer liquid model. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 303-317. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a6/
[1] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987 | MR | Zbl
[2] Le Blon P., Maisek L., Volny v okeane, V 2-kh tomakh, Per. s angl., Mir, M., 1981
[3] Brink K. H., “Coastal-trapped waves with finite bottom friction”, Dynamics of Atmospheres and Oceans, 41:3–4 (2006), 172–190 | DOI
[4] Davey M. K., Hsieh W. W., Wajsowics R. S., “The free Kelvin wave with lateral and vertical viscosity”, J. of Physical Oceanography, 13:12 (1983), 2182–2191 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[5] Wajsowicz R. C., Gill A. E., “Adjustment of the ocean under buoyancy forces, I: the role of Kelvin waves”, J. of Physical Oceanography, 16:12 (1986), 2097–2114 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[6] Allen J. S., “A simple model for stratified shelf flow fields with bottom friction”, J. of Physical Oceanography, 14:7 (1984), 1200–1214 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[7] Pedloski Dzh., Geofizicheskaya gidrodinamika, Mir, V 2-kh tomakh. Per. s angl., 1984
[8] Clarke A. J., Shi C., “Critical frequencies at ocean boundaries”, J. Geophys. Res., 96:C6 (1991), 10731–10738 | DOI
[9] Smirnov S. V., “O resheniyakh dlya vnutrennikh zakhvachennykh voln”, Vychisl. mekh. splosh. sredy, 1:3 (2008), 96–105