A fifth order iterative method for solving nonlinear equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 297-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of this paper is to construct a new efficient iterative method for solving nonlinear equations. This method is mainly based on M. Javidi's paper [1] by using a new scheme of a modified homotopy perturbation method. This new method is of the fifth order of convergence, and it is compared with the second, third, fifth, and sixth order methods. Some numerical test problems are given to show the accuracy and fast convergence of the method proposed.
@article{SJVM_2011_14_3_a5,
     author = {M. Rafiullah},
     title = {A fifth order iterative method for solving nonlinear equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {297--302},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/}
}
TY  - JOUR
AU  - M. Rafiullah
TI  - A fifth order iterative method for solving nonlinear equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 297
EP  - 302
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/
LA  - ru
ID  - SJVM_2011_14_3_a5
ER  - 
%0 Journal Article
%A M. Rafiullah
%T A fifth order iterative method for solving nonlinear equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 297-302
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/
%G ru
%F SJVM_2011_14_3_a5
M. Rafiullah. A fifth order iterative method for solving nonlinear equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 297-302. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/

[1] Golbabai A., Javidi M., “A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method”, Appl. Math. Comput., 191 (2007), 199–205 | DOI | MR | Zbl

[2] He J. H., “Homotopy perturbation technique”, Comput. Methods Appl. Mech. Eng., 178:3–4 (1999), 257–262 | MR | Zbl

[3] Fang L. et al., “An efficient Newton-type method with fifth-order convergence for solving nonlinear equations”, Computational Applied Mathematics, 27 (2008), 269–274 | MR | Zbl

[4] Noor M. A., “Some iterative methods for solving nonlinear equations using homotopy perturbation method”, IJCM, 87 (2010), 141–149 | MR | Zbl

[5] Javidi M., “Fourth-order and fifth-order iterative methods for nonlinear algebraic equations”, Mathematical and Computer Modelling, 50 (2009), 66–71 | DOI | MR | Zbl

[6] Liao S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, Ph. D. thesis, Shanghai Jiao Tong University, Shanghai, 1992

[7] Wang X. et al., “Modified Jarratt method with sixth-order convergence”, Appl. Math. Lett., 22 (2009), 1798–1802 | DOI | MR | Zbl