@article{SJVM_2011_14_3_a5,
author = {M. Rafiullah},
title = {A fifth order iterative method for solving nonlinear equations},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {297--302},
year = {2011},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/}
}
M. Rafiullah. A fifth order iterative method for solving nonlinear equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 297-302. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/
[1] Golbabai A., Javidi M., “A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method”, Appl. Math. Comput., 191 (2007), 199–205 | DOI | MR | Zbl
[2] He J. H., “Homotopy perturbation technique”, Comput. Methods Appl. Mech. Eng., 178:3–4 (1999), 257–262 | MR | Zbl
[3] Fang L. et al., “An efficient Newton-type method with fifth-order convergence for solving nonlinear equations”, Computational Applied Mathematics, 27 (2008), 269–274 | MR | Zbl
[4] Noor M. A., “Some iterative methods for solving nonlinear equations using homotopy perturbation method”, IJCM, 87 (2010), 141–149 | MR | Zbl
[5] Javidi M., “Fourth-order and fifth-order iterative methods for nonlinear algebraic equations”, Mathematical and Computer Modelling, 50 (2009), 66–71 | DOI | MR | Zbl
[6] Liao S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, Ph. D. thesis, Shanghai Jiao Tong University, Shanghai, 1992
[7] Wang X. et al., “Modified Jarratt method with sixth-order convergence”, Appl. Math. Lett., 22 (2009), 1798–1802 | DOI | MR | Zbl