Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_3_a5, author = {M. Rafiullah}, title = {A fifth order iterative method for solving nonlinear equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {297--302}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/} }
M. Rafiullah. A fifth order iterative method for solving nonlinear equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 297-302. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a5/
[1] Golbabai A., Javidi M., “A third-order Newton type method for nonlinear equations based on modified homotopy perturbation method”, Appl. Math. Comput., 191 (2007), 199–205 | DOI | MR | Zbl
[2] He J. H., “Homotopy perturbation technique”, Comput. Methods Appl. Mech. Eng., 178:3–4 (1999), 257–262 | MR | Zbl
[3] Fang L. et al., “An efficient Newton-type method with fifth-order convergence for solving nonlinear equations”, Computational Applied Mathematics, 27 (2008), 269–274 | MR | Zbl
[4] Noor M. A., “Some iterative methods for solving nonlinear equations using homotopy perturbation method”, IJCM, 87 (2010), 141–149 | MR | Zbl
[5] Javidi M., “Fourth-order and fifth-order iterative methods for nonlinear algebraic equations”, Mathematical and Computer Modelling, 50 (2009), 66–71 | DOI | MR | Zbl
[6] Liao S. J., The proposed homotopy analysis technique for the solution of nonlinear problems, Ph. D. thesis, Shanghai Jiao Tong University, Shanghai, 1992
[7] Wang X. et al., “Modified Jarratt method with sixth-order convergence”, Appl. Math. Lett., 22 (2009), 1798–1802 | DOI | MR | Zbl