The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 277-289

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the Parker–Sochacki method, which is used for solving systems of ordinary differential equations and the implementation of this method on the graphics processors. As a test, we consider the solution of the classical $N$ bodies problem. The algorithm makes possible to effectively use massive parallel graphics processors, and provides an acceptable accuracy at a multiple time reduction as compared to the processors of a conventional architecture.
@article{SJVM_2011_14_3_a3,
     author = {E. A. Nurminski and A. A. Bury},
     title = {The {Parker--Sochacki} method for solving systems of ordinary differential equations using graphics processors},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {277--289},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/}
}
TY  - JOUR
AU  - E. A. Nurminski
AU  - A. A. Bury
TI  - The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 277
EP  - 289
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/
LA  - ru
ID  - SJVM_2011_14_3_a3
ER  - 
%0 Journal Article
%A E. A. Nurminski
%A A. A. Bury
%T The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 277-289
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/
%G ru
%F SJVM_2011_14_3_a3
E. A. Nurminski; A. A. Bury. The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 277-289. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/