Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_3_a3, author = {E. A. Nurminski and A. A. Bury}, title = {The {Parker--Sochacki} method for solving systems of ordinary differential equations using graphics processors}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {277--289}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/} }
TY - JOUR AU - E. A. Nurminski AU - A. A. Bury TI - The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 277 EP - 289 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/ LA - ru ID - SJVM_2011_14_3_a3 ER -
%0 Journal Article %A E. A. Nurminski %A A. A. Bury %T The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 277-289 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/ %G ru %F SJVM_2011_14_3_a3
E. A. Nurminski; A. A. Bury. The Parker--Sochacki method for solving systems of ordinary differential equations using graphics processors. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 277-289. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a3/
[1] Pruett C. D., Rudmin J. W., Lacy J. M., An adaptive $N$-body algorithm of optimal order http://www.sciencedirect.com/science/article/B6WHY-484SHBH-2/2/00e4db5cd90f5a49c9347cfa8b60308a
[2] Stewart R., Bair W., “Spiking neural network simulation: numerical integration with the Parker–Sochacki method”, J. of Computational Neuroscience, 27:1 (2009), 115–133 | DOI | MR
[3] Parker G. E., Sochacki J. S., “Implementing the Picard iteration”, Neural, Parallel Scientific Computations, 4:1, March (1996), 97–112 | MR | Zbl
[4] Arnold V. I., Obyknovennye differentsialnye uravneniya, Izhevskaya respublikanskaya tipografiya, Izhevsk, 2000
[5] Pruett C. D., Rudmin J. W., Lacy J. M., “An adaptive $N$-body algorithm of optimal order”, J. Comput. Phys., 187:1 (2003), 298–317 | DOI | MR | Zbl
[6] Belleman R. G., Bedorf J., Zwart S. P., “High performance direct cravitational $N$-body simulations on graphics processing units; II: an implementation in CUDA”, New Astronomy, 13:2, July (2007), 103–112 | DOI
[7] Nyland L., Harris M., Prins J., “Fast $N$-body simulation with CUDA”, GPU Gems 3, ed. H. Nguyen, Addison Wesley Professional, Massachusetts, August 2007
[8] Hamada T., Narumi T., Yokota R. et al., “42 TFlops hierarchical $N$-body simulations on GPUs with applications in both astrophysics and turbulence”, SC' 09, Proc. of the Conference on High Performance Computing Networking, Storage and Analysis, ACM, New York, NY, USA, 2009, 1–12 | MR
[9] Fujiwara K., Nakasato N., Fast simulations of gravitational many-body problem on RV770 GPU, 2009, arXiv: 0904.3659
[10] Rudmin J. W., Application of the Parker–Sochacki Method to Celestial Mechanics, Technical report, James Madison University, Harrisonburg, 1998, arXiv: 1007.1677v1
[11] NVIDIA CUDA C Programming Guide, 3.2 edition, 2010 http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
[12] NVIDIA CUDA Reference Manual, 2.3 edition, 2009 http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/CUDA_Reference_Manual_2.3.pdf