A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 261-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.
@article{SJVM_2011_14_3_a2,
     author = {Z. Lu},
     title = {A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/}
}
TY  - JOUR
AU  - Z. Lu
TI  - A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 261
EP  - 276
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/
LA  - ru
ID  - SJVM_2011_14_3_a2
ER  - 
%0 Journal Article
%A Z. Lu
%T A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 261-276
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/
%G ru
%F SJVM_2011_14_3_a2
Z. Lu. A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 261-276. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/

[1] Arada N., Casas E., Tröltzsch F., “Error estimates for the numerical approximation of a semilinear elliptic control problem”, Comp. Optim. Appl., 23 (2002), 201–229 | DOI | MR | Zbl

[2] Arada N., Casas E., Tröltzsch F., “Error estimates for the numerical approximation of a boundary semilinear elliptic control problem”, Comp. Optim. Appl., 31 (2005), 193–219 | DOI | MR

[3] Alt W., Mackenroth U., “Convergence of finite element approximations to state constrained convex parabolic boundary control problems”, SIAM J. Control Oprim., 27 (1989), 718–736 | DOI | MR | Zbl

[4] Bergounioux M., Haddou M., Hintermuller M., Kunisch K., “A comparison of a Moreau–Yosida based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim., 11 (2000), 495–521 | DOI | MR | Zbl

[5] Brunner H., Yan N. N., “Finite element methods for optimal control problems governed by integral equations and integro-differential equations”, Appl. Numer. Math., 47 (2003), 173–187 | DOI | MR

[6] Chen Y., Lu Z., “Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems”, Comp. Methods Appl. Mech. Engrg., 199 (2010), 1415–1423 | DOI | MR

[7] Chen Y., Lu Z., “Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods”, Finite Elem. Anal. Des., 46 (2010), 957–965 | DOI | MR

[8] Chen Y., Liu W. B., “A posteriori error estimates for mixed finite element solutions of convex optimal control problems”, J. Comp. Appl. Math., 211 (2008), 76–89 | DOI | MR | Zbl

[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[10] Falk F. S., “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., 44 (1973), 28–47 | DOI | MR | Zbl

[11] French D. A., King J. T., “Approximation of an elliptic control problem by the finite element method”, Numer. Funct. Anal. Optim., 12 (1991), 299–315 | DOI | MR

[12] Geveci T., “On the approximation of the solution of an optimal control problem governed by an elliptic equation”, RAIRO: Numer. Anal., 13 (1979), 313–328 | MR | Zbl

[13] Gong W., Yan N. N., “A posteriori error estimates for boundary control problems governed by the parabolic partial differential equations”, J. Comp. Math., 27 (2009), 68–88 | MR | Zbl

[14] Gunzburger M. D., Hou S. L., “Finite dimensional approximation of a class of constrained nonlinear control problems”, SIAM J. Control Optim., 34 (1996), 1001–1043 | DOI | MR | Zbl

[15] Hintermuller M., Ito K., Kunisch K., The Primal-Dual Active Set Strategy as Semi-Smooth Newton Method, Report 214, Technische Universität, 2001; Hintermuller M., Ito K., Kunisch K., “The primal-dual active set strategy as a semismooth Newton method”, SIAM J. Optim., 13:3 (2002), 865–888 | DOI | MR

[16] Kufner A., Kunisch K., Function Spaces, Nordhoff, Leiden, 1977 | MR

[17] Ladyzhenskaya O. A., Uraltseva N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR | Zbl

[18] Lasiecka I., “Ritz–Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions”, SIAM J. Control Optim., 22 (1984), 477–500 | DOI | MR | Zbl

[19] Liu H. P., Yan N. N., “Superconvergence and a posteriori error estimates for boundary control by Stokes equations”, J. Comp. Math., 24 (2006), 343–356 | MR | Zbl

[20] Liu W. B., Yan N. N., “A posteriori error estimates for some model boundary control problems”, J. Comp. Appl. Math., 120 (2000), 159–173 | DOI | MR | Zbl

[21] Liu W. B., Yan N. N., “A posteriori error estimates for convex boundary control problems”, SIAM J. Numer. Anal., 39 (2001), 73–99 | DOI | MR | Zbl

[22] Liu W. B., Yan N. N., “A posteriori error estimates for distributed convex optimal control problems”, Numer. Math., 101 (2005), 1–27 | DOI | MR

[23] Liu W. B., Yan N. N., “A posteriori error estimates for control problems governed by onlinear elliptic equation”, Adv. Comp. Math., 15 (2001), 285–309 | DOI | MR | Zbl

[24] Lu Z., Chen Y., “A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems”, Adv. Appl. Math. Mech., 1 (2009), 242–256 | MR

[25] Lu Z., Chen Y., “$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problem govern by semilinear elliptic equation”, Numer. Anal. and Appl., 2:1 (2009), 74–86 | DOI | MR

[26] Mossino J., “An application of duality to distributed optimal control problems with constraints on the control and the state”, J. Math. Anal. Appl., 50 (1975), 223–242 | DOI | MR | Zbl

[27] Miliner F. A., “Mixed finite element methods for quasilinear second-order elliptic problems”, Math. Comp., 44 (1985), 303–320 | DOI | MR

[28] Neittaanmaki P., Tiba D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, M. Dekker, New York, 1994 | MR

[29] Scott L. R., “Finite element interpolation of nonsmooth functions satisfying boundary conditions”, Math. Comput., 54 (1990), 483–493 | DOI | MR | Zbl

[30] Ulbrich M., Nonsmooth Newton-Like Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces, Habilitation thesis, Technische Universität München, München, 2002

[31] Verfurth R., “A posteriori error estimates for nonlinear problems”, Math. Comput., 62 (1994), 445–475 | MR