A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 261-276

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is aimed at studying finite element discretization for a class of quadratic boundary optimal control problems governed by nonlinear elliptic equations. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates can be used to construct a reliable adaptive finite element approximation for the boundary optimal control problem. Finally, we present a numerical example to confirm our theoretical results.
@article{SJVM_2011_14_3_a2,
     author = {Z. Lu},
     title = {A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {261--276},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/}
}
TY  - JOUR
AU  - Z. Lu
TI  - A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 261
EP  - 276
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/
LA  - ru
ID  - SJVM_2011_14_3_a2
ER  - 
%0 Journal Article
%A Z. Lu
%T A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 261-276
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/
%G ru
%F SJVM_2011_14_3_a2
Z. Lu. A~posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 261-276. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a2/