The influence of the time step size on results of numerical modeling of the global ocean climate
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 215-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, based on the numerical large-scale geostrophic ocean thermohaline circulation model, the influence of a numerical time step for modeling the large-scale temperature and salinity fields with the use of an implicit time integration method is investigated. It is shown that for a more adequate description of processes of a deep vertical convection and modeling a more realistic ocean thermohaline circulation, it is necessary to apply time steps no more than 10 days. At such time steps, the influence of numerical viscosity (diffusion) is insignificant.
@article{SJVM_2011_14_2_a7,
     author = {A. V. Scherbakov and V. V. Malakhova},
     title = {The influence of the time step size on results of numerical modeling of the global ocean climate},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {215--230},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a7/}
}
TY  - JOUR
AU  - A. V. Scherbakov
AU  - V. V. Malakhova
TI  - The influence of the time step size on results of numerical modeling of the global ocean climate
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 215
EP  - 230
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a7/
LA  - ru
ID  - SJVM_2011_14_2_a7
ER  - 
%0 Journal Article
%A A. V. Scherbakov
%A V. V. Malakhova
%T The influence of the time step size on results of numerical modeling of the global ocean climate
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 215-230
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a7/
%G ru
%F SJVM_2011_14_2_a7
A. V. Scherbakov; V. V. Malakhova. The influence of the time step size on results of numerical modeling of the global ocean climate. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 215-230. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a7/

[1] Bryan K., “Climate and the ocean circulation. III. The ocean model”, Monthly Weather Review, 97 (1969), 806–827 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Cox M. D., A Primitive Equation. 3-Dimensional Model of the Ocean, Technical Report No 1, GFDL Ocean Group, Princeton, NJ, 1984

[3] Pacanowski R. C., Griffies S. M., The MOM 3 Manual, Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, USA, 1999

[4] Zalesnyi V. B., Modelirovanie krupnomasshtabnykh dvizhenii v Mirovom okeane, Otdel vychislit. mat. AN SSSR, M., 1984

[5] Zalesnyi V. B., “Chislennoe modelirovanie termokhalinnoi tsirkulyatsii Mirovogo okeana”, Meteorologiya i gidrologiya, 1998, no. 2, 54–64

[6] Zalesnyi V. B., Moshonkin S. N., “Ravnovesnyi termokhalinnyi rezhim globalnoi tsirkulyatsii okeana”, Izv. RAN. Fizika atmosfery i okeana, 35:3 (1999), 371–398

[7] Golubeva E. N., Ivanov Yu. A., Kuzin V. I., Platov G. A., “Chislennoe modelirovanie tsirkulyatsii Mirovogo okeana s uchetom verkhnego kvaziodnorodnogo sloya”, Okeanologiya, 32:3 (1992), 395–405

[8] Kuzin V. I., Golubeva E. N., Platov G. A., Modelirovanie gidrofizicheskikh kharakteristik sistemy Severnyi Ledovityi okean–Severnaya Atlantika, Kollektivnaya monografiya “Fundamentalnye issledovaniya okeanov i morei”, v. 1, Nauka, M., 2006

[9] Seidov D., “An intermediate model for large-scale ocean circulation studies”, Dynamics of atmospheres and ocean, 25 (1996), 25–55 | DOI

[10] Edwards N. R., Willmott A. J., Killworth P. D., “On the role of topography and wind stress on the stability of the thermohaline circulation”, J. Phys. Oceanogr., 28 (1998), 756–778 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Maier-Reimer E., Mikolajewicz U., The Hamburg Large-Scale Geostrophic Ocean Circulation Modell, Tech. Rep., Deutsches KlimaRechenZentrum, 1990

[12] Maier-Reimer E., Mikolajewicz U., Hasselmann K., “Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohalince surface forcing”, J. Phys. Oceanogr., 23 (1993), 731–757 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] Gorchakov V. A., Ryabchenko V. A., “Modelirovanie sezonnoi izmenchivosti Indiiskogo okeana: Effekty verkhnego kvaziodnorodnogo sloya”, Okeanologiya, 32:2 (1992), 203–210

[14] Fokin S. A., Kattsov V. M., “Model obschei tsirkulyatsii okeana kak komponent ob'edinennoi globalnoi klimaticheskoi modeli GGO”, Meteorologiya i gidrologiya, 2001, no. 3, 5–18

[15] Scherbakov A. V., Malakhova V. V., Chislennoe modelirovanie globalnogo klimata okeana, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008

[16] Sarkisyan A. S., Chislennyi analiz i prognoz morskikh techenii, Gidrometeoizdat, L., 1977

[17] Marchuk G. I., Sarkisyan A. S., Matematicheskoe modelirovanie tsirkulyatsii okeana, Nauka, M., 1988 | MR

[18] Levitus S., Climatological Atlas of the World Ocean, NOAA/ERL GFDL Professional Paper 13, Princeton, N.J., 1982

[19] Cai W., “Circulation driven by observed surface thermohaline fields in a course resolution ocean general circulation model”, J. Geoph. Res., 99:C5 (1994), 10163–10181 | DOI

[20] Scherbakov A. V., Sinyagovskaya V. V., “Ekstrapolyatsiya Richardsona na neravnomernoi setke v zadache advektivno-diffuzionnogo perenosa”, Tr. VTs SO RAN. Ser. Chislennoe modelirovanie v zadachakh atmosfery, okeana i okruzhayuschei sredy, 1 (1993), 47–59

[21] Manabe S., Braien K., Klimat i tsirkulyatsiya okeana, Gidrometizdat, L., 1972

[22] Scherbakov A. V., Moiseev V. M., Raznostnaya skhema dlya advektivno-diffuzionnogo uravneniya, Preprint No 631, VTs, Sib. otd-nie AN SSSR, Novosibirsk, 1985

[23] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980

[24] Scherbakov A. V., “Block iterative process for a difference advective-diffusive equation on sphere”, Proc. of the Inter. Conf. on Comput. Mathemat., Part I, ICM MG Publisher, Novosibirsk, 2002, 124–129 | MR

[25] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977 | MR