On simulation of complex regimes of the Rayleigh--Benard convection
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 179-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

The 2D and 3D turbulent convectional flows of viscous and incompressible fluids in a rectangular parallelepiped are numerically simulated when heating from below. The horizontal boundaries are stress-free for the 3D case, and stress-free or rigid for the 2D simulation. It is shown that in spite of the quantitative discrepancy between the results of the 3D simulation and the experiment, the 3D simulation shows the correct power laws for temperature and vertical velocity pulsations versus supercriticality. In the 2D simulation, a similar correspondence is observed at a relatively low supercriticality (approximately up to 250). At a high superriticality, in the 2D convection, the existence of a large-scale structure is dominating, as it determines the property of a flow.
@article{SJVM_2011_14_2_a5,
     author = {I. B. Palymskiy},
     title = {On simulation of complex regimes of the {Rayleigh--Benard} convection},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {179--204},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a5/}
}
TY  - JOUR
AU  - I. B. Palymskiy
TI  - On simulation of complex regimes of the Rayleigh--Benard convection
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 179
EP  - 204
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a5/
LA  - ru
ID  - SJVM_2011_14_2_a5
ER  - 
%0 Journal Article
%A I. B. Palymskiy
%T On simulation of complex regimes of the Rayleigh--Benard convection
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 179-204
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a5/
%G ru
%F SJVM_2011_14_2_a5
I. B. Palymskiy. On simulation of complex regimes of the Rayleigh--Benard convection. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 179-204. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a5/

[1] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl

[2] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids A, 5:12 (1993), 3226–3232 | DOI | Zbl

[3] Travis B., Olson P., Schubert G., “The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection”, J. Fluid Mech., 216 (1990), 71–91 | DOI

[4] Arter W., “Nonlinear Rayleigh–Benard convection with square planform”, J. Fluid Mech., 152 (1985), 391–418 | DOI | Zbl

[5] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two- and three-dimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl

[6] Thual O., “Zero-Prandtl-number convection”, J. Fluid Mech., 240 (1992), 229–258 | DOI | Zbl

[7] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl

[8] Hartlep T., Tilgner A., Busse F. H., “Large scale structures in Rayleigh–Benard convection at high Rayleigh numbers”, Phys. Rev. Lett., 91:6 (2003), 064501, 4 pp. | DOI

[9] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl

[10] Amati G., Koal K., Massaioli F., Sreenivasan K. R., Verzicco R., “Turbulent thermal convection at Rayleigh numbers for a Boussinesq fluid of constant Prandtl number”, Phys. Fluids, 17:12 (2005), 121701, 4 pp. | DOI

[11] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 51–60 | DOI | Zbl

[12] Van Reeuwijk M., Jonker H. J. J., Hanjalic K., “Identification of the wind in Rayleigh–Benard convection”, Phys. Fluids, 17:5 (2005), 051704, 4 pp. | DOI | MR

[13] Malevsky A. V., Yuen D. A., “Characteristics-based methods applied to infinite Prandtl number thermal convection in the hard turbulent regime”, Phys. Fluids A, 3:9 (1991), 2105–2115 | DOI | Zbl

[14] Veronis G., “Large-amplitude Benard convection”, J. Fluid Mech., 26, no. part 1 (1966), 49–68 | DOI | MR | Zbl

[15] DeLuca E. E., Werne J., Rosner R., Cattaneo F., “Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection”, Phys. Rev. Lett., 64:20 (1990), 2370–2373 | DOI

[16] Werne J., “Structure of hard-turbulent convection in two dimensions: Numerical evidence”, Phys. Rev. E, 48:2 (1993), 1020–1035 | DOI

[17] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a two-dimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl

[18] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI

[19] Krishnamurti R., Howard L. N., “Large-scale flow generation in turbulent convection”, Proc. Natl. Acad. Sci. USA (Applied physical and mathematical sciences), 78:4 (1981), 1981–1985 | DOI

[20] Farhadieh R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, J. Fluid Mech., 66, no. part 4 (1974), 739–752 | DOI

[21] Chu T. Y., Goldstein R. J., “Turbulent convection in a horizontal layer of water”, J. Fluid Mech., 60, no. part 1 (1973), 141–159 | DOI

[22] Deardorff J. W., Willis G. E., “Investigation of turbulent thermal convection between horizontal plates”, J. Fluid Mech., 28, no. part 4 (1967), 675–704 | DOI

[23] Thomas D. B., Townsend A. A., “Turbulent convection over a heated horizontal surface”, J. Fluid Mech., 2 (1957), 473–492 | DOI | Zbl

[24] Fitzjarrald D. E., “An experimental study of turbulent convection in air”, J. Fluid Mech., 73, no. part 4 (1976), 693–719 | DOI

[25] Denton R. A., Wood I. R., “Turbulent convection between two horizontal plates”, Int. J. Heat and Mass Transfer, 22:10 (1979), 1339–1346 | DOI

[26] Garon A. M., Goldstein R. J., “Velocity and heat transfer measurements in thermal convection”, Phys. Fluids, 16:11 (1973), 1818–1825 | DOI

[27] Malkus W. V. R., “Discrete transitions in turbulent convection”, Proc. Roy. Soc. London Ser. A, 225:1161 (1954), 185–195 | DOI | MR

[28] Niemela J. J., Sreenivasan K. R., “Turbulent convection at high Rayleigh numbers and aspect ratio 4”, J. Fluid Mech., 557 (2006), 411–422 | DOI | Zbl

[29] Fleischer A. S., Goldstein R. J., “High-Rayleigh-number convection of pressurized gases in a horizontal enclosure”, J. Fluid Mech., 469 (2002), 1–12 | DOI | Zbl

[30] Wu X-Zh., Libchaber A., “Scaling relations in thermal turbulence: the aspect-ratio dependence”, Phys. Rev. A, 45:2 (1992), 842–845 | DOI

[31] Palymskii I. B., “O kachestvennom razlichii reshenii dvumernoi i trekhmernoi konvektsii”, Nelineinaya dinamika, 5:2 (2009), 183–203

[32] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999

[33] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izvestiya RAN. MZhG, 2007, no. 4, 61–71

[34] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28

[35] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, IPM im. M. V. Keldysha AN SSSR, M., 1987 | MR

[36] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156

[37] Palymskii I. B., “Chislennoe issledovanie spektrov trekhmernoi konvektsii Releya–Benara”, Izvestiya RAN. FAO, 45:5 (2009), 691–699 | Zbl

[38] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl

[39] Faber T. E., Gidroaerodinamika, Postmarket, M., 2001

[40] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972

[41] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychisl. tekhnol., 5:6 (2000), 53–61 | MR

[42] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 7:2 (2004), 143–163 | Zbl

[43] Palymskii I. B., Gertsenshtein S. Ya., Sibgatullin I. N., “Ob intensivnoi turbulentnoi konvektsii v gorizontalnom ploskom sloe zhidkosti”, Izvestiya RAN. FAO, 44:1 (2008), 75–85

[44] Schubert G., Anderson C. A., “Finite element calculations of very high Rayleigh number thermal convection”, Geophys. J. R. Astr. Soc., 80 (1985), 576–601

[45] Gertsenstein S., Sibgatullin I., “Bifurcations, Transition to turbulence and development of chaotic regimes for double-diffusive convection”, Wseas transactions on applied and theoretical mechanics, 1:1 (2006), 110–114

[46] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl

[47] Moore D. R., Weiss N. O., “Two-dimensional Rayleigh–Benard convection”, J. Fluid Mech., 58, no. part 2 (1973), 289–312 | DOI | Zbl

[48] Threlfall D. C., “Free convection in low-temperature gaseous helium”, J. Fluid Mech., 67, no. part 1 (1975), 17–28 | DOI