Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_2_a5, author = {I. B. Palymskiy}, title = {On simulation of complex regimes of the {Rayleigh--Benard} convection}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {179--204}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a5/} }
I. B. Palymskiy. On simulation of complex regimes of the Rayleigh--Benard convection. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 179-204. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a5/
[1] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl
[2] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids A, 5:12 (1993), 3226–3232 | DOI | Zbl
[3] Travis B., Olson P., Schubert G., “The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection”, J. Fluid Mech., 216 (1990), 71–91 | DOI
[4] Arter W., “Nonlinear Rayleigh–Benard convection with square planform”, J. Fluid Mech., 152 (1985), 391–418 | DOI | Zbl
[5] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two- and three-dimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl
[6] Thual O., “Zero-Prandtl-number convection”, J. Fluid Mech., 240 (1992), 229–258 | DOI | Zbl
[7] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl
[8] Hartlep T., Tilgner A., Busse F. H., “Large scale structures in Rayleigh–Benard convection at high Rayleigh numbers”, Phys. Rev. Lett., 91:6 (2003), 064501, 4 pp. | DOI
[9] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl
[10] Amati G., Koal K., Massaioli F., Sreenivasan K. R., Verzicco R., “Turbulent thermal convection at Rayleigh numbers for a Boussinesq fluid of constant Prandtl number”, Phys. Fluids, 17:12 (2005), 121701, 4 pp. | DOI
[11] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 51–60 | DOI | Zbl
[12] Van Reeuwijk M., Jonker H. J. J., Hanjalic K., “Identification of the wind in Rayleigh–Benard convection”, Phys. Fluids, 17:5 (2005), 051704, 4 pp. | DOI | MR
[13] Malevsky A. V., Yuen D. A., “Characteristics-based methods applied to infinite Prandtl number thermal convection in the hard turbulent regime”, Phys. Fluids A, 3:9 (1991), 2105–2115 | DOI | Zbl
[14] Veronis G., “Large-amplitude Benard convection”, J. Fluid Mech., 26, no. part 1 (1966), 49–68 | DOI | MR | Zbl
[15] DeLuca E. E., Werne J., Rosner R., Cattaneo F., “Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection”, Phys. Rev. Lett., 64:20 (1990), 2370–2373 | DOI
[16] Werne J., “Structure of hard-turbulent convection in two dimensions: Numerical evidence”, Phys. Rev. E, 48:2 (1993), 1020–1035 | DOI
[17] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a two-dimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl
[18] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI
[19] Krishnamurti R., Howard L. N., “Large-scale flow generation in turbulent convection”, Proc. Natl. Acad. Sci. USA (Applied physical and mathematical sciences), 78:4 (1981), 1981–1985 | DOI
[20] Farhadieh R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, J. Fluid Mech., 66, no. part 4 (1974), 739–752 | DOI
[21] Chu T. Y., Goldstein R. J., “Turbulent convection in a horizontal layer of water”, J. Fluid Mech., 60, no. part 1 (1973), 141–159 | DOI
[22] Deardorff J. W., Willis G. E., “Investigation of turbulent thermal convection between horizontal plates”, J. Fluid Mech., 28, no. part 4 (1967), 675–704 | DOI
[23] Thomas D. B., Townsend A. A., “Turbulent convection over a heated horizontal surface”, J. Fluid Mech., 2 (1957), 473–492 | DOI | Zbl
[24] Fitzjarrald D. E., “An experimental study of turbulent convection in air”, J. Fluid Mech., 73, no. part 4 (1976), 693–719 | DOI
[25] Denton R. A., Wood I. R., “Turbulent convection between two horizontal plates”, Int. J. Heat and Mass Transfer, 22:10 (1979), 1339–1346 | DOI
[26] Garon A. M., Goldstein R. J., “Velocity and heat transfer measurements in thermal convection”, Phys. Fluids, 16:11 (1973), 1818–1825 | DOI
[27] Malkus W. V. R., “Discrete transitions in turbulent convection”, Proc. Roy. Soc. London Ser. A, 225:1161 (1954), 185–195 | DOI | MR
[28] Niemela J. J., Sreenivasan K. R., “Turbulent convection at high Rayleigh numbers and aspect ratio 4”, J. Fluid Mech., 557 (2006), 411–422 | DOI | Zbl
[29] Fleischer A. S., Goldstein R. J., “High-Rayleigh-number convection of pressurized gases in a horizontal enclosure”, J. Fluid Mech., 469 (2002), 1–12 | DOI | Zbl
[30] Wu X-Zh., Libchaber A., “Scaling relations in thermal turbulence: the aspect-ratio dependence”, Phys. Rev. A, 45:2 (1992), 842–845 | DOI
[31] Palymskii I. B., “O kachestvennom razlichii reshenii dvumernoi i trekhmernoi konvektsii”, Nelineinaya dinamika, 5:2 (2009), 183–203
[32] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999
[33] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izvestiya RAN. MZhG, 2007, no. 4, 61–71
[34] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28
[35] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, IPM im. M. V. Keldysha AN SSSR, M., 1987 | MR
[36] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156
[37] Palymskii I. B., “Chislennoe issledovanie spektrov trekhmernoi konvektsii Releya–Benara”, Izvestiya RAN. FAO, 45:5 (2009), 691–699 | Zbl
[38] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl
[39] Faber T. E., Gidroaerodinamika, Postmarket, M., 2001
[40] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972
[41] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychisl. tekhnol., 5:6 (2000), 53–61 | MR
[42] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 7:2 (2004), 143–163 | Zbl
[43] Palymskii I. B., Gertsenshtein S. Ya., Sibgatullin I. N., “Ob intensivnoi turbulentnoi konvektsii v gorizontalnom ploskom sloe zhidkosti”, Izvestiya RAN. FAO, 44:1 (2008), 75–85
[44] Schubert G., Anderson C. A., “Finite element calculations of very high Rayleigh number thermal convection”, Geophys. J. R. Astr. Soc., 80 (1985), 576–601
[45] Gertsenstein S., Sibgatullin I., “Bifurcations, Transition to turbulence and development of chaotic regimes for double-diffusive convection”, Wseas transactions on applied and theoretical mechanics, 1:1 (2006), 110–114
[46] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl
[47] Moore D. R., Weiss N. O., “Two-dimensional Rayleigh–Benard convection”, J. Fluid Mech., 58, no. part 2 (1973), 289–312 | DOI | Zbl
[48] Threlfall D. C., “Free convection in low-temperature gaseous helium”, J. Fluid Mech., 67, no. part 1 (1975), 17–28 | DOI