Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_1_a7, author = {S. M. Prigarin and K. Hahn and G. Winkler}, title = {Estimation of fractal dimension of random fields on the basis of variance analysis of increments}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {91--102}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/} }
TY - JOUR AU - S. M. Prigarin AU - K. Hahn AU - G. Winkler TI - Estimation of fractal dimension of random fields on the basis of variance analysis of increments JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 91 EP - 102 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/ LA - ru ID - SJVM_2011_14_1_a7 ER -
%0 Journal Article %A S. M. Prigarin %A K. Hahn %A G. Winkler %T Estimation of fractal dimension of random fields on the basis of variance analysis of increments %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 91-102 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/ %G ru %F SJVM_2011_14_1_a7
S. M. Prigarin; K. Hahn; G. Winkler. Estimation of fractal dimension of random fields on the basis of variance analysis of increments. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/
[1] Hausdorff F., “Dimension und äußeres Maß”, Math. Annalen., 79 (1918), 157–179 | DOI | MR | Zbl
[2] Stoyan D., Stoyan H., Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics, John Wiley Sons, Chichester, 1994 | MR | Zbl
[3] Prigarin S. M., Hahn K., Winkler G., “Comparative analysis of two numerical methods to measure the Hausdorff dimension of the fractional Brownian motion”, Numerical Analysis and Applications, 1:2 (2008), 163–178 | DOI
[4] Prigarin S. M., Hahn K., Winkler G., “Variational dimension of random sequences with stationary increments and its application”, Numerical Analysis and Applications, 2:4 (2009), 352–363 | DOI
[5] Adler R. J., The Geometry of Random Fields, Wiley, New York, 1981 | MR | Zbl
[6] Kolmogorov A. N., “Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum”, Report Acad. Sci. USSR, 26 (1940), 115–118 | MR
[7] Mandelbrot B. B., Ness J. W. V., “Fractional Brownian motions, fractional noises and applications”, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl
[8] Samorodnitsky G., Taqqu M. S., Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman Hall, New York, 1994 | MR | Zbl
[9] Ayache A., “Hausdorff dimension of the graph of the fractional Brownian sheet”, Rev. Mat. Iberoamericana, 20:2 (2004), 395–412 | MR | Zbl
[10] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005