Estimation of fractal dimension of random fields on the basis of variance analysis of increments
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with estimating the fractal dimension of realizations of random fields. The numerical methods in use are based on analysis of the variance of increments. To study the fractal properties, we propose the use of a specific characteristic of random fields called “variational dimension”. For a class of Gaussian fields with homogeneous increments, the variational dimension converges to the Hausdorff dimension. Several examples are presented to illustrate that the concept of variational dimension can be used to construct effective computational methods.
@article{SJVM_2011_14_1_a7,
     author = {S. M. Prigarin and K. Hahn and G. Winkler},
     title = {Estimation of fractal dimension of random fields on the basis of variance analysis of increments},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - K. Hahn
AU  - G. Winkler
TI  - Estimation of fractal dimension of random fields on the basis of variance analysis of increments
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 91
EP  - 102
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/
LA  - ru
ID  - SJVM_2011_14_1_a7
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A K. Hahn
%A G. Winkler
%T Estimation of fractal dimension of random fields on the basis of variance analysis of increments
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 91-102
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/
%G ru
%F SJVM_2011_14_1_a7
S. M. Prigarin; K. Hahn; G. Winkler. Estimation of fractal dimension of random fields on the basis of variance analysis of increments. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/

[1] Hausdorff F., “Dimension und äußeres Maß”, Math. Annalen., 79 (1918), 157–179 | DOI | MR | Zbl

[2] Stoyan D., Stoyan H., Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics, John Wiley Sons, Chichester, 1994 | MR | Zbl

[3] Prigarin S. M., Hahn K., Winkler G., “Comparative analysis of two numerical methods to measure the Hausdorff dimension of the fractional Brownian motion”, Numerical Analysis and Applications, 1:2 (2008), 163–178 | DOI

[4] Prigarin S. M., Hahn K., Winkler G., “Variational dimension of random sequences with stationary increments and its application”, Numerical Analysis and Applications, 2:4 (2009), 352–363 | DOI

[5] Adler R. J., The Geometry of Random Fields, Wiley, New York, 1981 | MR | Zbl

[6] Kolmogorov A. N., “Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum”, Report Acad. Sci. USSR, 26 (1940), 115–118 | MR

[7] Mandelbrot B. B., Ness J. W. V., “Fractional Brownian motions, fractional noises and applications”, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl

[8] Samorodnitsky G., Taqqu M. S., Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman Hall, New York, 1994 | MR | Zbl

[9] Ayache A., “Hausdorff dimension of the graph of the fractional Brownian sheet”, Rev. Mat. Iberoamericana, 20:2 (2004), 395–412 | MR | Zbl

[10] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005