Estimation of fractal dimension of random fields on the basis of variance analysis of increments
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 91-102

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with estimating the fractal dimension of realizations of random fields. The numerical methods in use are based on analysis of the variance of increments. To study the fractal properties, we propose the use of a specific characteristic of random fields called “variational dimension”. For a class of Gaussian fields with homogeneous increments, the variational dimension converges to the Hausdorff dimension. Several examples are presented to illustrate that the concept of variational dimension can be used to construct effective computational methods.
@article{SJVM_2011_14_1_a7,
     author = {S. M. Prigarin and K. Hahn and G. Winkler},
     title = {Estimation of fractal dimension of random fields on the basis of variance analysis of increments},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - K. Hahn
AU  - G. Winkler
TI  - Estimation of fractal dimension of random fields on the basis of variance analysis of increments
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 91
EP  - 102
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/
LA  - ru
ID  - SJVM_2011_14_1_a7
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A K. Hahn
%A G. Winkler
%T Estimation of fractal dimension of random fields on the basis of variance analysis of increments
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 91-102
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/
%G ru
%F SJVM_2011_14_1_a7
S. M. Prigarin; K. Hahn; G. Winkler. Estimation of fractal dimension of random fields on the basis of variance analysis of increments. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a7/