Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 467-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm based on a recurrent neural Wang's network and the WTA (“Winner takes all”) principle is applied to the construction of Hamiltonian cycles in graphs of distributed computer systems (CSs). The algorithm is used for: 1) regular graphs (2D- and 3D-tori, and hypercubes) of distributed CSs and 2) 2D-tori disturbed by removing an arbitrary edge. The neural network parameters for the construction of Hamiltonian cycles and sub-optimal cycles with a length close to that of Hamiltonian ones are determined. Our experiments show that the iteration method (Jacobi, Gauss-Seidel, or SOR) used for solving the system of differential equations describing a neural network strongly affects the process of cycle construction and depends upon the number of torus nodes.
@article{SJVM_2010_13_4_a8,
     author = {M. S. Tarkov},
     title = {Construction of {Hamiltonian} cycles by recurrent neural networks in graphs of distributed computer systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {467--475},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a8/}
}
TY  - JOUR
AU  - M. S. Tarkov
TI  - Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 467
EP  - 475
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a8/
LA  - ru
ID  - SJVM_2010_13_4_a8
ER  - 
%0 Journal Article
%A M. S. Tarkov
%T Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 467-475
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a8/
%G ru
%F SJVM_2010_13_4_a8
M. S. Tarkov. Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 467-475. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a8/

[1] Tarkov M. S., “Vlozhenie struktur parallelnykh programm v struktury zhivuchikh raspredelennykh vychislitelnykh sistem”, Avtometriya, 39:3 (2003), 84–96

[2] Tarkov M. S., “Detsentralizovannoe upravlenie resursami i zadaniyami v zhivuchikh raspredelennykh vychislitelnykh sistemakh”, Avtometriya, 41:5 (2005), 81–91

[3] Palmer J. F., “The NCUBE family of parallel supercomputers”, Proc. IEEE Int. Conf. on Computer Design (ICCD-86), 1986, 107

[4] Peterson C., Sutton J., Wiley P., “iWarp: A 100-MOPS VLIW Microprocessor for Multicomputers”, IEEE MICRO, 11:3 (1991), 26–87 | DOI

[5] Cray T3E http://www.cray.com/products/systems/crayt3e/1200e.html/

[6] Yu H., Chung I-Hsin, Moreira J., “Topology mapping for Blue Gene/L supercomputer”, Proc. of the 2006 ACM/IEEE SC' 06 Conf. (SC' 06), Tampa, Florida, November 2006

[7] Abramov S .M., Zadneprovskii V. F., Shmelev A. B., Moskovskii A. A., “SuperEVM ryada 4 semeistva “SKIF”. Shturm vershiny superkompyuternykh tekhnologii”, Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 2009, no. 5, 200–210 | MR

[8] Osovskii S., Neironnye seti dlya obrabotki informatsii, Finansy i statistika, M., 2002

[9] Khaikin S., Neironnye seti: polnyi kurs, Vilyams, M., 2006

[10] Tarkov M. S., Neirokompyuternye sistemy, Izd-vo Internet-universiteta informatsionnykh tekhnologii, Binom. Laboratoriya znanii, M., 2006

[11] Hopfield J. J., Tank D. W., “ ‘Neural’ computation of decisions in optimization problems”, Biological Cybernetics, 52:3 (1985), 141–152 | MR | Zbl

[12] Melamed I. I., “Neironnye seti i kombinatornaya optimizatsiya”, Avtomatika i telemekhanika, 1994, no. 11, 3–40 | MR | Zbl

[13] Smith K. A., “Neural networks for combinatorial optimization: a review of more than a decade of research”, INFORMS J. On Computing, 11:1, Winter (1999), 15–34 | DOI | MR | Zbl

[14] Hung D. L., Wang J., “Digital hardware realization of a recurrent neural network for solving the assignment problem”, Neurocomputing, 51 (2003), 447–461 | DOI

[15] Siqueira P. H., Steiner M. T. A., Scheer S., “A new approach to solve the traveling salesman problem”, Neurocomputing, 70 (2007), 1013–1021

[16] Feng G., Douligeris C., “The convergence and parameter relationship for discrete-time continuous-state Hopfield network”, Proc. of Int. Joint Conf. on Neural Networks, 2001, 376–381

[17] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR