Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 387-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a projection-difference method for the Cauchy problem for an operator-differential equation with a self-adjoint leading operator $A(t)$ and a non-linear monotone subordinate operator $K(\cdot)$ in a Hilbert space. This method leads to solving a system of linear algebraic equations at each time level. Error estimates for the approximate solutions as well as for the fractional powers of the operator $A(t)$ are obtained. The method is applied to a model parabolic problem.
@article{SJVM_2010_13_4_a2,
     author = {P. V. Vinogradova and A. G. Zarubin},
     title = {Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/}
}
TY  - JOUR
AU  - P. V. Vinogradova
AU  - A. G. Zarubin
TI  - Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 387
EP  - 401
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/
LA  - ru
ID  - SJVM_2010_13_4_a2
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%A A. G. Zarubin
%T Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 387-401
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/
%G ru
%F SJVM_2010_13_4_a2
P. V. Vinogradova; A. G. Zarubin. Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 387-401. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/

[1] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zhurn. vychisl. matem. i mat. fiziki, 36:3 (1996), 44–51 | MR

[2] Samarskii A. A., Vabischevich P. N., Matus P. P., “Koeffitsientnaya ustoichivost differentsialno-operatornykh uravnenii i operatorno-raznostnykh skhem”, Matematicheskoe modelirovanie, 10:8 (1998), 103–113 | MR | Zbl

[3] Matus P. P., Panaiotova I. N., “Silnaya ustoichivost differentsialno-operatornykh uravnenii i operatorno-raznostnykh skhem”, Differentsialnye uravneniya, 35:2 (1999), 256–265 | MR | Zbl

[4] Iovanovich B. S., Matus P. P., “Silnaya ustoichivost differentsialno-operatornykh uravnenii i operatorno-raznostnykh skhem v integralnykh po vremeni normakh”, Differentsialnye uravneniya, 37:7 (2001), 950–958 | MR

[5] Jovanovic B. S., “Global and asymptotic stability of operator-difference schemes”, Computational Methods in Applied Mathematics, 4:2 (2004), 192–205 | MR | Zbl

[6] Zarubin A. G., Tiunchik M. F., “O metode Rote–Galërkina dlya odnogo klassa lineinykh nestatsionarnykh uravnenii”, Differentsialnye uravneniya, 19:12 (1983), 2141–2147 | MR

[7] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolsona dlya parabolicheskogo uravneniya”, Sib. matem. zhurn., 42:3 (2001), 670–682 | MR | Zbl

[8] Vinogradova P. V., “Otsenki pogreshnosti proektsionno-raznostnogo metoda dlya lineinogo differentsialno-operatornogo uravneniya”, Differentsialnye uravneniya, 44:7 (2008), 942–951 | MR | Zbl

[9] Vinogradova P., “Convergence estimates of a projection-difference method for an operator-differential equation”, J. of Computational and Applied Mathematics, 231 (2009), 1–10 | DOI | MR | Zbl

[10] Emmrich E., “Two-step BDF time discretization of nonlinear evolution problems covered by monotone operators with strongly continuous perturbations”, Computational Methods in Applied Mathematics, 9:1 (2009), 37–62 | MR | Zbl

[11] Zarubin A. G., “O skorosti skhodimosti metoda Rote–Galërkina dlya operatornykh differentsialnykh uravnenii”, Differentsialnye uravneniya, 22:11 (1986), 2135–2144 | MR | Zbl

[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR

[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[14] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR

[15] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[16] Oya P. E., “O skhodimosti i ustoichivosti metoda Galërkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uch. zap. Tartuskogo universiteta, 374, TGU, Tartu, 1975, 194–210

[17] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR

[18] Demidovich V. B., “Ob asimptoticheskom povedenii reshenii konechno-raznostnykh uravnenii. I: Obschie polozheniya”, Differentsialnye uravneniya, 10:12 (1974), 2267–2278 | Zbl

[19] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[20] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR