Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2010_13_4_a2, author = {P. V. Vinogradova and A. G. Zarubin}, title = {Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {387--401}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/} }
TY - JOUR AU - P. V. Vinogradova AU - A. G. Zarubin TI - Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2010 SP - 387 EP - 401 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/ LA - ru ID - SJVM_2010_13_4_a2 ER -
%0 Journal Article %A P. V. Vinogradova %A A. G. Zarubin %T Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2010 %P 387-401 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/ %G ru %F SJVM_2010_13_4_a2
P. V. Vinogradova; A. G. Zarubin. Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 387-401. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a2/
[1] Vabischevich P. N., “Vektornye additivnye raznostnye skhemy dlya evolyutsionnykh uravnenii pervogo poryadka”, Zhurn. vychisl. matem. i mat. fiziki, 36:3 (1996), 44–51 | MR
[2] Samarskii A. A., Vabischevich P. N., Matus P. P., “Koeffitsientnaya ustoichivost differentsialno-operatornykh uravnenii i operatorno-raznostnykh skhem”, Matematicheskoe modelirovanie, 10:8 (1998), 103–113 | MR | Zbl
[3] Matus P. P., Panaiotova I. N., “Silnaya ustoichivost differentsialno-operatornykh uravnenii i operatorno-raznostnykh skhem”, Differentsialnye uravneniya, 35:2 (1999), 256–265 | MR | Zbl
[4] Iovanovich B. S., Matus P. P., “Silnaya ustoichivost differentsialno-operatornykh uravnenii i operatorno-raznostnykh skhem v integralnykh po vremeni normakh”, Differentsialnye uravneniya, 37:7 (2001), 950–958 | MR
[5] Jovanovic B. S., “Global and asymptotic stability of operator-difference schemes”, Computational Methods in Applied Mathematics, 4:2 (2004), 192–205 | MR | Zbl
[6] Zarubin A. G., Tiunchik M. F., “O metode Rote–Galërkina dlya odnogo klassa lineinykh nestatsionarnykh uravnenii”, Differentsialnye uravneniya, 19:12 (1983), 2141–2147 | MR
[7] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolsona dlya parabolicheskogo uravneniya”, Sib. matem. zhurn., 42:3 (2001), 670–682 | MR | Zbl
[8] Vinogradova P. V., “Otsenki pogreshnosti proektsionno-raznostnogo metoda dlya lineinogo differentsialno-operatornogo uravneniya”, Differentsialnye uravneniya, 44:7 (2008), 942–951 | MR | Zbl
[9] Vinogradova P., “Convergence estimates of a projection-difference method for an operator-differential equation”, J. of Computational and Applied Mathematics, 231 (2009), 1–10 | DOI | MR | Zbl
[10] Emmrich E., “Two-step BDF time discretization of nonlinear evolution problems covered by monotone operators with strongly continuous perturbations”, Computational Methods in Applied Mathematics, 9:1 (2009), 37–62 | MR | Zbl
[11] Zarubin A. G., “O skorosti skhodimosti metoda Rote–Galërkina dlya operatornykh differentsialnykh uravnenii”, Differentsialnye uravneniya, 22:11 (1986), 2135–2144 | MR | Zbl
[12] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR
[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl
[14] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR
[15] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl
[16] Oya P. E., “O skhodimosti i ustoichivosti metoda Galërkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uch. zap. Tartuskogo universiteta, 374, TGU, Tartu, 1975, 194–210
[17] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR
[18] Demidovich V. B., “Ob asimptoticheskom povedenii reshenii konechno-raznostnykh uravnenii. I: Obschie polozheniya”, Differentsialnye uravneniya, 10:12 (1974), 2267–2278 | Zbl
[19] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR
[20] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR