The inverse problem for acoustics equations. The multi-level adaptive algorithm
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 323-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a numerical solution to the inverse problem for the acoustic equations using an optimization method for a stratified medium. Based on the allocation of the acoustic wave field on the medium surface, the 1D allocations of a medium density as well as velocity and absorption coefficient of the acoustic wave are determined. The absorption is considered in a sample piece of the Foigt skew field. The conjugate gradients and the Newton methods are used for minimization. To increase the efficiency of the numerical algorithm, we propose a multi-level adaptable algorithm. This algorithm is based on the partitioning the whole algorithm of the solution to the inverse problem into a series of consecutive levels. Each of such levels is characterized by the number of parameters, defined at it. While passing from one level on another level, the number of parameters adaptively changes in terms of the value of a functional and convergence rate. Selection of minimization parameters is illustrated on the results of the inverse problem solution in a spectral domain, when the desired values are presented as a Tchebychev polynomial series, and minimization is carried out according to the value of this quantity at a point. The efficiency of the method proposed is compared to the non-adaptive method of solution. The selection of the most optimal parameters of the multi-level method is presented. It is shown that the multi-level algorithm possesses certain advantages as compared to the one without partitioning into levels. The algorithm proposed first of all allows obtaining a more exact solution to the inverse problem.
@article{SJVM_2010_13_3_a5,
     author = {A. F. Mastryukov},
     title = {The inverse problem for acoustics equations. {The} multi-level adaptive algorithm},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {323--341},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a5/}
}
TY  - JOUR
AU  - A. F. Mastryukov
TI  - The inverse problem for acoustics equations. The multi-level adaptive algorithm
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 323
EP  - 341
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a5/
LA  - ru
ID  - SJVM_2010_13_3_a5
ER  - 
%0 Journal Article
%A A. F. Mastryukov
%T The inverse problem for acoustics equations. The multi-level adaptive algorithm
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 323-341
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a5/
%G ru
%F SJVM_2010_13_3_a5
A. F. Mastryukov. The inverse problem for acoustics equations. The multi-level adaptive algorithm. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 323-341. http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a5/

[1] Aki K., Richards P., Kolichestvennaya seismologiya, v. 2, Mir, M., 1983

[2] Uait Dzh., Vozbuzhdenie i rasprostranenie seismicheskikh voln, Nedra, M., 1986

[3] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[5] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Nauka, M., 1963 | MR

[6] Mora P. R., “Nonlinear two-dimensional elastic inversion of multioffset seismic data”, Geophysics, 52 (1987), 1211–1228 | DOI

[7] Turter G., Siggins A. F., “Constant $Q$ attenuation of subsurface radar pulses”, Geophysics, 59 (1994), 1192–1200 | DOI

[8] Sena A. G., Takosoz M. N., “Simultaneous reconstruction permittivity and conductivity for crosshole geometries”, Geophysics, 55 (1990), 1302–1311 | DOI

[9] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Mir, M., 1984 | MR

[10] Mastryukov A. F., “Odnovremennoe obraschenie skorosti i koeffitsienta pogloscheniya akusticheskoi volny”, Geologiya i geofizika, 1998, no. 5, 640–648

[11] Mastryukov A. F., “Reshenie obratnoi zadachi dlya uravnenii akustiki mnogourovnevym optimizatsionnym metodom”, Geologiya i geofizika, 1999, no. 5, 764–773

[12] Ursin B., “Review of elastic and electromagnetic wave propagation in horizontally layered media”, Geophysics, 48 (1983), 1063–1081 | DOI

[13] Zhao H., Ursin B., Amundsen L., “Frequency-wavenumber elastic inversions of marine data”, Geophysics, 59 (1994), 1868–1877 | DOI

[14] Mastryukov A. F., “Vosstanovlenie 2-kh mernoi provodimosti sredy optimizatsionnym metodom”, Geologiya i geofizika, 1997, no. 3, 686–692

[15] Fedorenko R. P., “Relaksatsionnyi metod dlya resheniya ellipticheskikh uravnenii”, ZhVMiMF, 1 (1961), 922–927

[16] Demmel Dzh., Vychislitelnaya lineinaya algebra, Mir, M., 2001