The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 243-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimates for entries of matrices inverse to the cyclic band matrices and for the matrix norms are presented. The results obtained are used for determining the convergence conditions of Interpolation processes by periodic odd degree splines for different derivatives. In particular, the positive solution to the C. de Boor problem on unconditional convergence of one of the two middle derivatives in the periodic case is proposed.
@article{SJVM_2010_13_3_a0,
     author = {Yu. S. Volkov},
     title = {The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/}
}
TY  - JOUR
AU  - Yu. S. Volkov
TI  - The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 243
EP  - 253
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/
LA  - ru
ID  - SJVM_2010_13_3_a0
ER  - 
%0 Journal Article
%A Yu. S. Volkov
%T The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 243-253
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/
%G ru
%F SJVM_2010_13_3_a0
Yu. S. Volkov. The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 243-253. http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[2] Volkov Yu. S., “Ob otsenke elementov matritsy, obratnoi k tsiklicheskoi lentochnoi matritse”, Sib. zhurn. vychisl. matematiki, 6:3 (2003), 263–267 | Zbl

[3] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl

[4] de Boor C., “Odd-degree spline interpolation at a biinfinite knot sequence”, Approximation theory, Proc. Internat. Colloq. (Inst. Angew. Math., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1976, 30–53 | MR

[5] Volkov Yu. S., “Bezuslovnaya skhodimost eschë odnoi srednei proizvodnoi dlya interpolyatsionnykh splainov nechëtnoi stepeni”, DAN, 401:5 (2005), 592–594 | MR

[6] de Boor C., “On bounding spline interpolation”, J. Approxim. Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl

[7] Higham N. J., “Estimating the matrix $p$-norm”, Numer. Math., 62:4 (1992), 539–555 | DOI | MR

[8] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i eë prilozheniya, Mir, M., 1972 | MR | Zbl

[9] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl

[10] Volkov Yu. S., “O postroenii interpolyatsionnykh polinomialnykh splainov”, Vychislitelnye sistemy. Splain-funktsii i ikh prilozheniya, 159, Izd-vo IM SO RAN, Novosibirsk, 1997, 3–18 | MR

[11] Volkov Yu. S., Ravnomernaya skhodimost proizvodnykh interpolyatsionnykh splainov nechëtnoi stepeni, Preprint, IM Sib. otd-nie AN SSSR, Novosibirsk, 1984, 62 pp. | Zbl

[12] Zmatrakov N. L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Priblizhenie funktsii i operatorov, Tr. matem. instituta im. V. A. Steklova AN SSSR, 138, 1975, 71–93 | MR | Zbl

[13] Zmatrakov N. L., “Ravnomernaya skhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov”, Vychislitelnye sistemy. Metody splain-funktsii, 72, Izd-vo IM SO AN SSSR, Novosibirsk, 1977, 10–29 | MR

[14] Shadrin A. Yu., “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl

[15] Volkov Yu. S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Vychislitelnye sistemy. Priblizhenie splainami, 106, Izd-vo IM SO AN SSSR, Novosibirsk, 1984, 41–56 | MR