Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2010_13_3_a0, author = {Yu. S. Volkov}, title = {The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {243--253}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/} }
TY - JOUR AU - Yu. S. Volkov TI - The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2010 SP - 243 EP - 253 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/ LA - ru ID - SJVM_2010_13_3_a0 ER -
%0 Journal Article %A Yu. S. Volkov %T The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2010 %P 243-253 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/ %G ru %F SJVM_2010_13_3_a0
Yu. S. Volkov. The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 243-253. http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a0/
[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[2] Volkov Yu. S., “Ob otsenke elementov matritsy, obratnoi k tsiklicheskoi lentochnoi matritse”, Sib. zhurn. vychisl. matematiki, 6:3 (2003), 263–267 | Zbl
[3] Demko S., “Inverses of band matrices and local convergence of spline projections”, SIAM J. Numer. Anal., 14:4 (1977), 616–619 | DOI | MR | Zbl
[4] de Boor C., “Odd-degree spline interpolation at a biinfinite knot sequence”, Approximation theory, Proc. Internat. Colloq. (Inst. Angew. Math., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1976, 30–53 | MR
[5] Volkov Yu. S., “Bezuslovnaya skhodimost eschë odnoi srednei proizvodnoi dlya interpolyatsionnykh splainov nechëtnoi stepeni”, DAN, 401:5 (2005), 592–594 | MR
[6] de Boor C., “On bounding spline interpolation”, J. Approxim. Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl
[7] Higham N. J., “Estimating the matrix $p$-norm”, Numer. Math., 62:4 (1992), 539–555 | DOI | MR
[8] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i eë prilozheniya, Mir, M., 1972 | MR | Zbl
[9] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl
[10] Volkov Yu. S., “O postroenii interpolyatsionnykh polinomialnykh splainov”, Vychislitelnye sistemy. Splain-funktsii i ikh prilozheniya, 159, Izd-vo IM SO RAN, Novosibirsk, 1997, 3–18 | MR
[11] Volkov Yu. S., Ravnomernaya skhodimost proizvodnykh interpolyatsionnykh splainov nechëtnoi stepeni, Preprint, IM Sib. otd-nie AN SSSR, Novosibirsk, 1984, 62 pp. | Zbl
[12] Zmatrakov N. L., “Skhodimost interpolyatsionnogo protsessa dlya parabolicheskikh i kubicheskikh splainov”, Priblizhenie funktsii i operatorov, Tr. matem. instituta im. V. A. Steklova AN SSSR, 138, 1975, 71–93 | MR | Zbl
[13] Zmatrakov N. L., “Ravnomernaya skhodimost tretikh proizvodnykh interpolyatsionnykh kubicheskikh splainov”, Vychislitelnye sistemy. Metody splain-funktsii, 72, Izd-vo IM SO AN SSSR, Novosibirsk, 1977, 10–29 | MR
[14] Shadrin A. Yu., “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl
[15] Volkov Yu. S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Vychislitelnye sistemy. Priblizhenie splainami, 106, Izd-vo IM SO AN SSSR, Novosibirsk, 1984, 41–56 | MR