Construction and optimization of predictions on the basis of first degree recurrent splines
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 227-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper addresses to the problem of the point and the interval predictions of the time series on basis of recurrent first degree splines with depth 1. The conditions of optimality for coefficients of the calculated scheme are found. The results of numerical experiments for analytically given functions with errors are presented. A comparison with classical methods of prediction of the time series is given.
@article{SJVM_2010_13_2_a6,
     author = {B. M. Shumilov and E. A. Esharov and N. K. Arkabaev},
     title = {Construction and optimization of predictions on the basis of first degree recurrent splines},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a6/}
}
TY  - JOUR
AU  - B. M. Shumilov
AU  - E. A. Esharov
AU  - N. K. Arkabaev
TI  - Construction and optimization of predictions on the basis of first degree recurrent splines
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 227
EP  - 241
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a6/
LA  - ru
ID  - SJVM_2010_13_2_a6
ER  - 
%0 Journal Article
%A B. M. Shumilov
%A E. A. Esharov
%A N. K. Arkabaev
%T Construction and optimization of predictions on the basis of first degree recurrent splines
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 227-241
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a6/
%G ru
%F SJVM_2010_13_2_a6
B. M. Shumilov; E. A. Esharov; N. K. Arkabaev. Construction and optimization of predictions on the basis of first degree recurrent splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 227-241. http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a6/

[1] Anderson T., Statisticheskii analiz vremennykh ryadov, Mir, M., 1976

[2] Livshits K. I., Sglazhivanie eksperimentalnykh dannykh splainami, Izd-vo TGU, Tomsk, 1991 | MR

[3] Kochegurova E. A., Tekuschaya approksimatsiya nestatsionarnykh sluchainykh protsessov v sistemakh upravleniya na osnove rekurrentnogo sglazhivayuschego splaina, Dis. kand. tekhn. nauk, Tomsk, 1990

[4] Shumilov B. M., “Rekurrentnaya approksimatsiya splainami”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1996, no. 1, 85–87 | MR | Zbl

[5] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[6] Shumilov B. M., Shumilova E. B., Analiz vremennykh ryadov i prognozirovanie. Metodicheskie ukazaniya, chast II, Izd-vo TGU, Tomsk, 2005

[7] Bronshtein I. N., Semendyaev K. A., Spravochnik po matematike dlya inzhenerov i uchaschikhsya vtuzov, 13-e izdanie, ispravl., Nauka, GFML, M., 1986

[8] Statisticheskii ezhegodnik po Tomskoi oblasti http://tmsk.gks.ru/default.aspx

[9] Boks D., Dzhenkins G., Analiz vremennykh ryadov. Prognoz i upravlenie, Vyp. I, Mir, M., 1974

[10] Lukashin Yu. P., Adaptivnye metody kratkosrochnogo prognozirovaniya, Statistika, M., 1979 | MR | Zbl