The solution to the 2D Maxwell equations by Laguerre spectral method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 143-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a spectral method for solving 2D Maxwell equations with relaxation of electromagnetic parameters is presented. The method proposed is based on the expansion of equations solution in the Laguerre functions in the temporal domain. The operation of functions convolution that is a part of formulas, describing relaxation processes is reduced to the sum of harmonics products. Maxwell's equations transform to a system of linear algebraic equations for harmonics of the solution. In the algorithm, the inner parameter of the Laguerre transform is used. With large values of this parameter, the solution is shifted to the field of high harmonics. This is done to simplify the numerical algorithm and to increase the efficiency of the problem solution. The results of comparison between the accuracy of the Laguerre method and a finite-difference method both for 2D medium structure and for a layered medium are given. The results of comparison of efficiency of the spectral and the finite difference methods for the axial and for the plane geometries of the problem are presented.
@article{SJVM_2010_13_2_a1,
     author = {A. F. Mastryukov and B. G. Mikhailenko},
     title = {The solution to the {2D} {Maxwell} equations by {Laguerre} spectral method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {143--160},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a1/}
}
TY  - JOUR
AU  - A. F. Mastryukov
AU  - B. G. Mikhailenko
TI  - The solution to the 2D Maxwell equations by Laguerre spectral method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 143
EP  - 160
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a1/
LA  - ru
ID  - SJVM_2010_13_2_a1
ER  - 
%0 Journal Article
%A A. F. Mastryukov
%A B. G. Mikhailenko
%T The solution to the 2D Maxwell equations by Laguerre spectral method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 143-160
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a1/
%G ru
%F SJVM_2010_13_2_a1
A. F. Mastryukov; B. G. Mikhailenko. The solution to the 2D Maxwell equations by Laguerre spectral method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a1/

[1] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[2] A. G. Tarkhov (red.), Elektrorazvedka, Spravochnik geofizika, Nedra, M., 1980

[3] Epov M. I., Mironov V. L., Komarov S. A., Muzalevskii K. V., “Elektromagnitnoe zondirovanie flyuidonasyschennogo sloistogo kollektora nanosekundnymi impulsami”, Geologiya i geofizika, 48:12 (2007), 1357–1365

[4] Wang T., Signorelli J., “Finite-difference modeling of electromagnetic tool response for logging while drilling”, Geophysics, 69 (2004), 152–160 | DOI

[5] Wu X., Habashy T. M., “Influence of steel casings on electromagnetic signals”, Geophysics, 59 (1994), 378–390 | DOI

[6] Lee K. H., Kim H. J., Uchida T., “Electromagnetic fields in a steel-cased borehole”, Geophysical Prospecting, 53 (2005), 13–21 | DOI

[7] Kashkin V. B., Sukhinin F. I., Distantsionnoe zondirovanie Zemli iz kosmosa, Logos, M., 2001

[8] Turner G., Siggins A. F., “Constant $Q$ attenuation of subsurface radar pulses”, Geophysics, 59 (1994), 1192–1200 | DOI

[9] Bergmann T., Robertsson J. O. A., Holliger K., “A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave in frequency-dependent media”, Geophysics, 64 (1999), 1369–1377 | DOI

[10] Konyukh G. V., Mikhailenko B. G., “Primenenie integralnogo preobrazovaniya Lagerra pri reshenii dinamicheskikh zadach seismiki”, Tr. IVMiMG. Mat. modelirovanie v geofizike, 5, Novosibirsk, 1998, 107–112

[11] Mastryukov A. F., Mikhailenko B. G., “Chislennoe modelirovanie rasprostraneniya elektromagnitnykh voln v neodnorodnykh sredakh s zatukhaniem na osnove spektralnogo preobrazovaniya Lagerra”, Geologiya i geofizika, 44:10 (2003), 1060–1069

[12] Mastryukov A. F., Mikhailenko B. G., “Modelirovanie rasprostraneniya elektromagnitnykh voln v relaksatsionnykh sredakh na osnove spektralnogo preobrazovaniya Lagerra”, Geologiya i geofizika, 47:3 (2006), 397–407

[13] Mastryukov A. F., Mikhailenko B. G., “Chislennoe reshenie uravnenii Maksvella v anizotropnykh sredakh na osnove preobrazovaniya Lagerra”, Geologiya i geofizika, 49:8 (2008), 397–407

[14] M. Abramovits, I. Stigun (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[15] Fornberg B., Ghrist M., “Spatial finite difference approximation for wave-type equations”, SIAM J. Numer. Anal., 37 (1999), 105–130 | DOI | MR | Zbl

[16] Paige C. C., Saunders M. A., “LSQR: an algorithm for sparse linear equations and sparse least squares”, ACM Transaction on Mathematical Software, 8 (1982), 43–71 | DOI | MR | Zbl

[17] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[18] Sneddon I., Preobrazovanie Fure, IL, M., 1955

[19] Ghrist M., Fornberg B., Driscoll T. A., “Staggered time integrator for wave equations”, SIAM J. Numer. Anal., 38 (2000), 718–741 | DOI | MR | Zbl

[20] N. B. Dortman, Fizicheskie svoistva gornykh porod, Spravochnik geofizika, Nedra, M., 1984