Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2010_13_1_a9, author = {E. V. Shevaldina}, title = {Local $\mathcal L$-splines preserving the differential operator kernel}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {111--121}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/} }
TY - JOUR AU - E. V. Shevaldina TI - Local $\mathcal L$-splines preserving the differential operator kernel JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2010 SP - 111 EP - 121 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/ LA - ru ID - SJVM_2010_13_1_a9 ER -
E. V. Shevaldina. Local $\mathcal L$-splines preserving the differential operator kernel. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 111-121. http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/
[1] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approxim. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl
[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[3] Korneichuk N. P., “O priblizhenii lokalnymi splainami minimalnogo defekta”, Ukr. matem. zhurn., 34:5 (1982), 617–621 | MR
[4] Wronicz Z., Chebyshevian splines, Dissertations Mathematical, Polska Academia Nauk, Institute Matematyczny, Warszawa, 1990 | MR
[5] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, ZhVMiMF, 33:7 (1993), 996–1003 | MR | Zbl
[6] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl
[7] Shevaldin V. T., “Approksimatsiya lokalnymi $L$-splainami, sootvetstvuyuschimi lineinomu differentsialnomu operatoru vtorogo poryadka”, Tr. Instituta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 195–213 | MR | Zbl