Local $\mathcal L$-splines preserving the differential operator kernel
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 111-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the local $\mathcal L$-splines of odd order with uniform nodes are constructed. These splines preserve basic functions from the kernel of the linear differential operator $\mathcal L$ with constant real coefficients and pairwise different roots of a characteristic polynomial. The pointwise error estimation of an approximation value using constructed splines on appropriate classes of differentiable functions is given.
@article{SJVM_2010_13_1_a9,
     author = {E. V. Shevaldina},
     title = {Local $\mathcal L$-splines preserving the differential operator kernel},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/}
}
TY  - JOUR
AU  - E. V. Shevaldina
TI  - Local $\mathcal L$-splines preserving the differential operator kernel
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 111
EP  - 121
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/
LA  - ru
ID  - SJVM_2010_13_1_a9
ER  - 
%0 Journal Article
%A E. V. Shevaldina
%T Local $\mathcal L$-splines preserving the differential operator kernel
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 111-121
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/
%G ru
%F SJVM_2010_13_1_a9
E. V. Shevaldina. Local $\mathcal L$-splines preserving the differential operator kernel. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 111-121. http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a9/

[1] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approxim. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[3] Korneichuk N. P., “O priblizhenii lokalnymi splainami minimalnogo defekta”, Ukr. matem. zhurn., 34:5 (1982), 617–621 | MR

[4] Wronicz Z., Chebyshevian splines, Dissertations Mathematical, Polska Academia Nauk, Institute Matematyczny, Warszawa, 1990 | MR

[5] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, ZhVMiMF, 33:7 (1993), 996–1003 | MR | Zbl

[6] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl

[7] Shevaldin V. T., “Approksimatsiya lokalnymi $L$-splainami, sootvetstvuyuschimi lineinomu differentsialnomu operatoru vtorogo poryadka”, Tr. Instituta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 195–213 | MR | Zbl