On barotropic trapped wave solutions with no-slip boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 449-463
Voir la notice de l'article provenant de la source Math-Net.Ru
Barotropic trapped wave solutions of a linearized system of the ocean dynamics equations are described, for semi-infinite, $f$-plane model basin of a constant depth bordering a straight, vertical coast, for some “typical” values of the model parameters. No-slip boundary conditions are considered. When the wave length is shorter than the Rossby deformation radius, the main features of the wave solutions are as follows: the Kelvin wave exponential offshore decay scale essentially decreases as the wave length decreases, an additional wave solution propagating in the opposite direction appears.
@article{SJVM_2009_12_4_a7,
author = {S. V. Smirnov},
title = {On barotropic trapped wave solutions with no-slip boundary conditions},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {449--463},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/}
}
S. V. Smirnov. On barotropic trapped wave solutions with no-slip boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 449-463. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/