On barotropic trapped wave solutions with no-slip boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 449-463

Voir la notice de l'article provenant de la source Math-Net.Ru

Barotropic trapped wave solutions of a linearized system of the ocean dynamics equations are described, for semi-infinite, $f$-plane model basin of a constant depth bordering a straight, vertical coast, for some “typical” values of the model parameters. No-slip boundary conditions are considered. When the wave length is shorter than the Rossby deformation radius, the main features of the wave solutions are as follows: the Kelvin wave exponential offshore decay scale essentially decreases as the wave length decreases, an additional wave solution propagating in the opposite direction appears.
@article{SJVM_2009_12_4_a7,
     author = {S. V. Smirnov},
     title = {On barotropic trapped wave solutions with no-slip boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {449--463},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/}
}
TY  - JOUR
AU  - S. V. Smirnov
TI  - On barotropic trapped wave solutions with no-slip boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 449
EP  - 463
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/
LA  - ru
ID  - SJVM_2009_12_4_a7
ER  - 
%0 Journal Article
%A S. V. Smirnov
%T On barotropic trapped wave solutions with no-slip boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 449-463
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/
%G ru
%F SJVM_2009_12_4_a7
S. V. Smirnov. On barotropic trapped wave solutions with no-slip boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 449-463. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/