On barotropic trapped wave solutions with no-slip boundary conditions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 449-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

Barotropic trapped wave solutions of a linearized system of the ocean dynamics equations are described, for semi-infinite, $f$-plane model basin of a constant depth bordering a straight, vertical coast, for some “typical” values of the model parameters. No-slip boundary conditions are considered. When the wave length is shorter than the Rossby deformation radius, the main features of the wave solutions are as follows: the Kelvin wave exponential offshore decay scale essentially decreases as the wave length decreases, an additional wave solution propagating in the opposite direction appears.
@article{SJVM_2009_12_4_a7,
     author = {S. V. Smirnov},
     title = {On barotropic trapped wave solutions with no-slip boundary conditions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {449--463},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/}
}
TY  - JOUR
AU  - S. V. Smirnov
TI  - On barotropic trapped wave solutions with no-slip boundary conditions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 449
EP  - 463
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/
LA  - ru
ID  - SJVM_2009_12_4_a7
ER  - 
%0 Journal Article
%A S. V. Smirnov
%T On barotropic trapped wave solutions with no-slip boundary conditions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 449-463
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/
%G ru
%F SJVM_2009_12_4_a7
S. V. Smirnov. On barotropic trapped wave solutions with no-slip boundary conditions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 449-463. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a7/

[1] Marchuk G. I., Dymnikov V. P., Zalesnyi V. B., Matematicheskie modeli v geofizicheskoi gidrodinamike i chislennye metody ikh realizatsii, Gidrometeoizdat, L., 1987 | MR | Zbl

[2] Le Blon P., Maisek L., Volny v okeane, V 2-kh tomakh. Per. s angl., Mir, M., 1981

[3] Mofjeld H. O., “Effects of vertical viscosity on Kelvin waves”, J. of Physical Oceanography, 10:7 (1980), 1039–1050 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] Davey M. K., Hsieh W. W., Wajsowics R. S., “The free Kelvin wave with lateral and vertical viscosity”, J. of Physical Oceanography, 13:12 (1983), 2182–2191 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Pedloski Dzh., Geofizicheskaya gidrodinamika, V 2-kh tomakh. Per. s angl., Mir, M., 1984

[6] Kamenkovich V. M., Sebekin B. I., “Ob otrazhenii ustanovivshikhsya nizkochastotnykh voln ot berega v umerennykh shirotakh okeana. Pryamolineinyi zapadnyi bereg”, Okeanologiya, 35:5 (1995), 645–657

[7] Kamenkovich V. M., Osnovy dinamiki okeana, Gidrometeoizdat, L., 1973