Variational dimension of random sequences and its application
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 435-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

A concept of variational dimension for a random sequence with stationary increments is introduced. In the Gaussian case, the variational dimension in the limit coincides with the Hausdorff dimension of a proper random process. Applications of the concept are illustrated by examples of the neurology data and the network traffic analysis.
@article{SJVM_2009_12_4_a6,
     author = {S. M. Prigarin and K. Hahn and G. Winkler},
     title = {Variational dimension of random sequences and its application},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {435--448},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a6/}
}
TY  - JOUR
AU  - S. M. Prigarin
AU  - K. Hahn
AU  - G. Winkler
TI  - Variational dimension of random sequences and its application
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 435
EP  - 448
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a6/
LA  - ru
ID  - SJVM_2009_12_4_a6
ER  - 
%0 Journal Article
%A S. M. Prigarin
%A K. Hahn
%A G. Winkler
%T Variational dimension of random sequences and its application
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 435-448
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a6/
%G ru
%F SJVM_2009_12_4_a6
S. M. Prigarin; K. Hahn; G. Winkler. Variational dimension of random sequences and its application. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 435-448. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a6/

[1] Stoyan D., Stoyan H., Fractals, Random Shapes and Point Fields – Methods of Geometrical Statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, New York, 1995 | MR | Zbl

[2] Sandau K., “A note on fractal sets and the measurement of fractal dimension”, Physics A, 233 (1996), 1–18 | DOI | MR

[3] Sandau K., Kurz H., “Measuring fractal dimension and complexity – an alternative approach with an application”, J. of Microscopy, 186, part. 2 (1997), 164–176 | DOI

[4] Turiel A., Perez-Vicente C. J., Grazzini J., “Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study”, J. of Computational Physics, 216 (2006), 362–390 | DOI | MR | Zbl

[5] Prigarin S. M., Khan K., Vinkler G., “Sravnitelnyi analiz dvukh chislennykh metodov dlya otsenki khausdorfovoi razmernosti drobnogo brounovskogo dvizheniya”, Sib. zhurn. vychisl. matematiki RAN. Sib. otd-nie (Novosibirsk), 11:2 (2008), 202–218

[6] Adler R. J., The Geometry of Random Fields, Wiley, New York, 1981 | MR | Zbl

[7] Prigarin S. M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[8] Falconer K., Fractal Geometry, Wiley, New York, 2003 | MR | Zbl

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984 | Zbl

[10] Mikhailov G. A., “Modelirovanie sluchainykh protsessov i polei na osnove tochechnykh potokov Palma”, Dokl. AN SSSR, 262:3 (1982), 531–535 | MR

[11] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR

[12] Gailus-Durner V., Fuchs H., Becker L., Bolle I., Brielmeier M., Calzada-Wack J., Elvert R., Ehrhardt N., Dalke C., Franz T. J., Grundner-Culemann E., Hammelbacher S., Holter S. M., Holzlwimmer G., Horsch M., Javaheri A., Kalaydjiev S. V., Klempt M., Kling E., Kunder S., Lengger C., Lisse T., Mijalski T., Naton B., Pedersen V., Prehn C., Przemeck G., Racz I., Reinhard C., Reitmeir P., Schneider I., Schrewe A., Steinkamp R., Zybill C., Adamski J., Beckers J., Behrendt H., Favor J., Graw J., Hel, “Introducing the German Mouse Clinic: open access platform for standardized phenotyping”, Nat. Methods, 2:6 (June, 2005), 403–404 | DOI

[13] Schneider I., Tirsch W., Faus-Keßler T., Becker L., Kling E., Austin Busse R., Bender A., Feddersen B., Tritschler J., Fuchs H., Gailus-Durner V., Englmeier K., Hrabe de Angelis M., Klopstock T., “Systematic, standardized and comprehensive neurological phenotyping of inbred mice strains in the German Mouse Clinic”, J. of Neurosci. Meth., 157 (2006), 82–90 | DOI

[14] Hahn K., Prigarin S., Rodenacker K., Sandau S., “A fractal dimension for exploratory fMRI analysis”, Proc. of the 15-th Annual Meeting of the ISMRM, Berlin, 2007, 1858–1858

[15] Leland W. E., Taqqu M. S., Willinger W., Wilson D. V., “On the self-similar nature of Ethernet traffic (extended version)”, IEEE/ACM Transactions of Networking, 2:1 (1994), 1–15 | DOI

[16] Kihong Park, Walter Willinger (eds.), Self-Similar Network Traffic and Performance Evaluation, John Wiley Sons, 2000